Calculatrice HP Prime

Atelier d'Initiation

Michel DECHAMPS & G.T. SPRINGER

Contenu

Introduction
Ecran d'Accueil et Fenêtre CAS
Applets HP
L'Applet Fonction
Fonctions et variables de l'Applet8
L'Applet Courbes Paramétrées11
L'Applet Courbes en Coordonnées Polaires12
L'Applet Explorateur Trinôme13
L'Applet Explorateur Trigonométrie14
L'Applet Graphiques Avancés15
L'Applet Géométrie Dynamique17
Exemple I : Explorer les Quadrilatères18
Exemple II : Cercle et Tangente
Exemple III : Pente et Nombre Dérivé d'une Fonction22
Exemple IV : Réflexion et Fonction « Inverse »
L'Applet Tableur
L'Applet Suite
L'Applet Statistiques à Une Variable
L'Applet Statistiques à Deux Variables35
Probabilités à densité
Loi Binomiale approchée par une loi Normale37
Algèbre Linéaire
Calcul Matriciel Formel
Calcul Matriciel (Réduction)
Analyse41
Différentiation Implicite
Arithmétique des Entiers45
Arithmétique des Polynômes46
Programmation / Algorithmique47
Mode Examen
L'Applet Data Streamer
Emulateur / Kit de Connectivité

Les 21 pages 3-5 ; 9-10 ; 15 ; 17-20 ; 22-24 ; 26 ; 29 ; 43-44 et 52-55 ont été rédigées par GT Springer et traduites et adaptées par M. Déchamps. Les 33 autres pages ont été rédigées par M. Déchamps. B. Parisse a bien voulu donner son avis éclairé pour tout ce qui concerne le calcul formel CAS.

Introduction

La HP Prime est la toute dernière calculatrice graphique de Hewlett-Packard. Elle intègre un écran tactile multi-point couleur et elle est livrée avec 18 Applets.

La HP Prime dispose d'un écran d'Accueil, avec un historique de vos calculs numériques, ainsi que d'une fenêtre CAS, avec un historique de vos calculs symboliques.

La HP Prime est conçue selon trois principes :

- Fournir plusieurs représentations mathématiques rigoureuses d'une même situation
- Donner aux élèves une approche tactile et interactive des mathématiques grâce aux nouvelles technologies d'affichage
- Donner une expérience simple et « fluide » de la résolution de problèmes mathématiques

Ecran d'Accueil et Fenêtre CAS

Avec la HP Prime, vous pouvez choisir soit de faire du calcul numérique dans l'écran d'Accueil soit de faire du calcul symbolique dans la fenêtre CAS. Par exemple, taper 1 puis entrer $\sqrt{8}$ dans l'écran d'accueil pour voir 2.828... ou taper 1 puis entrer $\sqrt{8}$ dans la fenêtre CAS pour voir $2\sqrt{2}$.

Ce qu'on peut faire à la fois dans l'écran d'Accueil et dans la fenêtre CAS :

- Taper un item pour le sélectionner ou taper 2 fois pour le copier dans la ligne de commande
- Taper et faire glisser l'item vers le haut ou vers le bas dans l'historique des calculs
- Taper more pour retrouver une précédente entrée ou un précédent résultat de l'autre fenêtre
- Taper la *Toolbox key* (Taper la *Toolbox k*
- Taper [[,vī,F]] pour ouvrir un menu donnant accès aux modèles
- Taper Esc pour quitter ces menus en abandonnant ce qu'on a sélectionné
- Taper en bas de l'écran sur l'un des menus contextuels **Stor**, **Copy**, et **Show** pour l'activer

<u>RPN</u>: La HP Prime dispose aussi de la logique d'entrée RPN. Dans *Home Settings* (Shiff Choisissez Entry et sélectionner RPN. On utilise ici le mode par défaut Textbook (donc 2D).

Exemple : Série

Supposons que nous voulions explorer la série $1 + \frac{3}{2} + \frac{5}{4} + \frac{7}{8} + \frac{9}{16}$...

Pour commencer nous pouvons calculer les premières sommes.

- 1. Taper for pour aller dans l'écran d'Accueil
- 2. Entrer 1 puis taper $\boxed{\frac{Enter}{z}}$
- 3. Entrer $\begin{bmatrix} + \\ Ans \end{bmatrix}$ 3 $\begin{bmatrix} + \\ \pi^{-1} \end{bmatrix}$ 2 $\begin{bmatrix} Enter \\ \approx \end{bmatrix}$
- 4. Taper a b/c pour passer de l'affichage décimal à l'affichage sous forme de fraction
- 5. Continuer ainsi pour afficher les 5 premières sommes partielles

Une autre approche consiste en l'utilisation de listes. Ainsi on peut définir la liste L1 qui contient la première somme partielle (1), suivie par le numérateur et le dénominateur du terme suivant. Sur la seconde ligne on ajoute le terme suivant à la somme, puis on ajoute 2 au numérateur et on multiplie le dénominateur par 2, et enfin on met le résultat dans la liste L1. Il suffit alors de taper

Dans la fenêtre CAS, on peut remarquer que la somme peut être réécrite d'une manière « symbolique »

 $1 + \frac{3}{2} + \frac{5}{4} + \frac{7}{8} + \frac{9}{16} \dots = \sum_{n=0}^{\infty} \frac{1+2n}{2^n}$

- 1. Taper CAS pour ouvrir la fenêtre CAS.
- 2. Taper Dur ouvrir le menu des modèles et sélectionner la somme discrète
- 3. Pour entrer n=0, taper AlPHA Shiff (,) 0
- 4. Pour entrer $+\infty$ en haut, taper A_{ns} , puis Shiff 9 et choisir ∞
- 5. Taper à droite et entrer l'expression rationnelle.
- 6. Taper $\boxed{\operatorname{Enter}_{z}}$ et le résultat *exact* s'affiche.

Applets HP

Les **App**lets HP sont conçus pour explorer des sujets mathématiques et résoudre des problèmes. Tous les **App**lets HP ont des structures semblables, avec trois « vues » symbolique, graphique et numérique permettant une approche multiple et un apprentissage aisé. Entrez vos données dans l'Applet durant votre séance de travail, et enregistrez cet applet et tout son contexte sous le nom qui vous plaît. Vous pouvez alors réinitialiser l'**App**let et l'utiliser pour une autre étude.

Les **App**lets HP ont leurs propres fonctions et variables que vous pouvez utiliser aussi dans l'écran d'Accueil, dans la fenêtre CAS ou dans des Programmes.

Tapez Apps pour voir les icônes des Applets. Feuilletez avec vos doigts la bibliothèque des Applets de la calculatrice, puis tapez sur l'icône de l'applet que vous voulez utiliser.

Les Applets HP respectent un code de couleur pour une identification aisée de leur type :

- 5 applets graphiques (bleus) pour fonctions et suites (notamment « Advanced Graphing »)
- 2 applets spéciaux (rouges) : l'applet de Géométrie Dynamique et le Tableur Formel
- 4 applets statistiques (violets) : traitement statistique (descriptif et inférentiel) de données
- 4 solveurs (oranges) pour la résolution de problèmes spécifiques (triangle, système linéaire)
- 3 Exploreurs (verts) pour l'étude des fonctions affines, trinômes et trigonométriques

L'Applet Fonction

L'applet Fonction vous donne tous les outils dont vous avez besoin pour l'étude des fonctions numériques et notamment leurs courbes représentatives, leurs zéros éventuels et leurs extrema, en utilisant par exemple des tables de valeurs, etc.

- Taper Apps L'Applet s'ouvre en vue "Symb".
- 2. Entrer $\frac{1}{2}(X^2+1)-1$ pour F1(X)
- 3. Entrer $\frac{1}{3}X^3 X + 1$ pour F2(X)
- 4. Pour chaque fonction, taper pour choisir la couleur du graphe et activer le traçage
- 5. Enfin taper Port pour tracer les graphes des fonctions sélectionnées

Dans la « vue Plot », taper Menu pour ouvrir la barre de menu en bas de l'écran :

- Zoom : ouvrer le menu Zoom
- Trace : activer ou désactiver le pointeur
- **Go To** : entrer une abscisse *x* et le pointeur sautera au point correspondant de la courbe
- Fcn : (cf en détails page suivante)
- **Defn** : afficher l'expression de la fonction
- Menu : ouvrer et fermer la barre de menu

Ce que vous pouvez faire :

- Tapez (•) or (•) pour vous déplacer sur la courbe représentative d'équation Y=F1(X)
- Tapez n'importe où sur l'écran et le pointeur sautera au point dont l'abscisse x est indiquée par votre doigt sur la courbe en cours de traçage.
- Tapez or pour sauter d'une fonction à l'autre en cours de traçage
- Touchez et déplacez la fenêtre graphique comme vous voulez.
- Tapez ______ ou _____ pour faire un zoom avant ou un zoom arrière autour du curseur

Zéros

Cherchons une racine de notre fonction trinôme F1.

- 1. Toucher l'écran près du point d'abscisse 1 de la courbe représentative de F1.
- 2. Taper menu pour ouvrir, si nécessaire, la barre de menu en bas de l'écran.
- 3. Taper **F**cn pour ouvrir le menu **F**cn
- 4. Dans la liste, sélectionner ¹Racine, soit en tapant dessus, soit en tapant ¹/_{Program Y}, soit en utilisant les touches (●) (●) (●).
- 5. Une valeur approchée de la racine est alors affichée $(x \approx 0.41421...)$
- 6. Taper pour voir avec plus de précision cette valeur, puis voir pour quitter.

Intersection des deux courbes

- 1. Taper **F** puis sélectionner ²Intersection.
- 2. Toucher l'écran au point d'intersection désiré.
- Une fenêtre contextuelle vous donne le choix de l'intersection de la courbe de F1 avec celle de F2. ou avec l'axe des *x*. Taper OK pour F2(X).
- 4. Les valeurs approchées des coordonnées du point d'intersection sont affichées.

Tangente & Pente

L'option ⁶Tangente du menu **Fcn** permet, en touchant un point de la courbe choisie par les touches O, de tracer la tangente en ce point, si elle existe. La tangente reste tracée si on se déplace avec les touches O. De même l'option ³Pente indique en un point donné de la courbe choisie la « pente » de la tangente (donc le nombre dérivé de la fonction correspondante) si cette fonction est dérivable en ce point. La pente est affichée jusqu'à ce que l'on appuie sur **Annul** en bas d'écran.

Aire Algébrique

Calculons l'aire algébrique du domaine situé entre les deux courbes et entre les verticales d'équations x = -3 et x = 3.

- 1. Taper **F**cn pour ouvrir le menu **F**cn et sélectionner Zone Signée.
- 2. Taper l'écran près du premier point d'abscisse x = -3, affiner la position avec (et) puis taper CK.
- Choisir l'aire du domaine situé sous la courbe de F1 et au-dessus de la courbe de F2.
- 4. Taper l'écran près du second point d'abscisse x = 3, puis affiner la position avec \bigcirc et \bigcirc .

Avec l'écran tactile la démarche est donc plus intuitive et interactive.

Tandis que le pointeur se déplace, l'aire algébrique du domaine situé entre les deux courbes se garnit. Les motifs "+" and "–" et les deux couleurs sont là pour rappeler aux élèves qu'il s'agit d'aires algébriques.

- 5. Taper valeur approchée de l'aire et valeur approchée de l'aire
- 6. Vérifier dans l'écran d'Accueil en calculant

l'intégrale
$$\int_{-3} (Fonction.F1(X) - Fonction.F2(X)) dX$$

qui est nulle

Extremum

Fonctionne de manière analogue à l'option Racine.

Fonctions et variables de l'Applet

Les cinq fonctions du menu **Fcn** sont disponibles depuis l'écran d'Accueil et elles stockent les derniers résultats dans les variables correspondantes. Par exemple, dans l'écran d'Accueil, ROOT(F1(X),1) donne – 0.414121... et cette valeur est mémorisée dans la variable Root.

Applet Fonction : Fonctions et Variables						
Option du menu Fcn	Option du menu Fcn Nom de la Fonction et sa Syntaxe Exemple					
Racine	ROOT(Expr1,Value)	$ROOT(X^2-1, 0.5)$	Root			
Intersection	ISECT(Expr1, Expr2, Value)	ISECT(F1(X),3-X,2)	Isect			
Pente	Slope(Expr1,Value)	$SLOPE(X^2-6,3)$	Slope			
Zone Signée	AREA(Expr1[,Expr2],Val1, Val2)	AREA(F1(X),-6.9,6.9)	SignedArea			
Extremum	EXTREMUM(Expr, Value)	EXTREMUM(F2(X),3)	Extremum			

Tableau de Valeurs

Comme toute calculatrice contemporaine, la HP Prime offre un tableau de valeurs pour les fonctions étudiées mais avec des fonctions interactives. Il suffit de taper une valeur de la variable dans la colonne de gauche pour se positionner immédiatement sur cette valeur. La fonction Zoom agit immédiatement sur le pas du Tableau.

- 1. Taper ymbe pour revenir à la vue "Symb". Nous allons étudier des fonctionnalités de la vue "Num".
- 2. Taper Shift + Esc pour effacer toutes les définitions de fonction et confirmer en tapant sur CK.
- 3. Pour F0(X), entrer $\frac{X^2 4}{-X^2 + X + 2}$.
- 4. Taper Shift + Num pour entrer dans la configuration de la vue "Num". Faites les changements ci-contre.

Notez la nouvelle touche de menu **PLOT**.

Touchez-la, les options de la vue "Num" et de la vue "Plot" se synchronisent. Par exemple, avec la vue "Plot" par défaut, Num Start est fixé à -15.9 et Num Step à 0.1. Lorsqu'on suit la courbe avec le curseur dans la vue "Plot" alors on navigue en miroir dans le tableau de valeurs : les deux vues affichent les mêmes couples de coordonnées (x,y).

- 5. Taper very pour ouvrir le menu qui permet de configurer la « vue » désirée.
- Sélectionner ²Split Screen : Plot Table pour partager l'écran en deux parties synchronisées.
 - A gauche : le graphe de la fonction
 - A droite : le tableau de valeurs synchronisé
- 7. Taper von pour ouvrir la vue "Num". Le menu contextuel apparaît en bas d'écran :
 - Zoom : le même qu'en vue "Plot"
 - Taille : pour choisir la taille de la police
 - **Defn** : pour la définition de la colonne
- 8. Il suffit d'entrer un nombre à droite pour que le tableau se « translate » à cette valeur et le graphe se synchronise.
- En utilisant les touches [...] et [...] ou avec 200m
 vous "zoomez" dans la table et le zoom agit de la même manière dans sur le graphe à gauche.

Fonction Conf	ig. Numériqu	e ^{19:35}
Début num.: 0		1
Palier num.: 1		_
A Débi	ut num3.55	
200m num. V Palie	er num025	
Type de nomb Automatiqu	le	٣
Entrer la valeur de débu	t du tableau	
Annul	Call	OK
Function N	Num Setup	22:38
Num Start: 0		
Num Step: Vi	iews	
1 Split Scre	en: Plot Detail	
2 Split Scre	en: Plot Table	
Num Zoom: SAutoscale		
4 Decimal		
Num Type: ^{5Integer}		*
6 Trig		
Enter table start value		
		OK
	X	FO
	X 1.6 1.65	F0 -1.38461538 -1.37735849
	X 1.6 1.65 1.7 1.75	F0 -1.38461538 -1.37735849 -1.37037037 -1.36363636
	X 1.6 1.65 1.7 1.75 1.8	F0 -1.38461538 -1.37735849 -1.37037037 -1.36363636 -1.35714286
	X 1.6 1.65 1.7 1.75 1.8 1.85 1.9	F0 -1.38461538 -1.37735849 -1.37037037 -1.36363636 -1.35714286 -1.35714286 -1.35087719 -1.34482759
	X 1.6 1.65 1.7 1.7 1.8 1.8 1.8 1.9 1.9 2	F0 -1.38461538 -1.37735849 -1.37037037 -1.36363666 -1.35714286 -1.35087719 -1.34482759 -1.33898305 -1.33898305 -1.346610
	X 1.6 1.65 1.7 1.75 1.8 1.8 1.9 1.95 2 2.05	F0 -1.38461538 -1.37735849 -1.37037037 -1.36363636 -1.35714286 -1.35087719 -1.34482759 -1.33898305 non défini -1.32786885
	X 1.6 1.65 1.7 1.8 1.85 1.9 1.95 2 2.05 2.1 2.15	F0 -1.38461538 -1.37735849 -1.37037037 -1.366363636 -1.35714286 -1.35087719 -1.34898305 non défini -1.32786885 -1.32258065 -1.31746032
	X 1.6 1.65 1.7 1.7 1.8 1.8 1.9 1.95 2 2.05 2.1 2.15 2.2 2.25	F0 -1.38461538 -1.37735849 -1.37037037 -1.36363663 -1.35714286 -1.35087719 -1.34482759 -1.33898305 non défini -1.32258065 -1.32258065 -1.31746032 -1.3125 -1.30269231
	X 1.6 1.65 1.7 1.75 1.8 1.85 1.9 1.95 2 2.05 2.1 2.25 2.25 2.3 2.3	F0 -1.38461538 1.37735849 -1.37037037 -1.36363663 -1.35714286 -1.35087719 -1.34482759 -1.33898305 -1.32786885 -1.32786885 -1.32786885 -1.32258065 -1.31746032 -1.31769231 -1.30303030
Zoom Taille	X 1.6 1.65 1.7 1.8 1.85 1.9 2.05 2.1 2.15 2.25 2.3 5 Cn De	F0 -1.38461538 -1.37735849 -1.37037037 -1.36636363 -1.35714286 -1.35087719 -1.34482759 -1.32898305 non défini -1.32786885 -1.32258065 -1.31746032 -1.3125 -1.30769231 -1.30303030 -1.29850746 fn
Zoom Taille	X 1.6 1.65 1.7 1.7 1.8 1.8 1.9 1.9 2.05 2.1 2.05 2.1 2.25 2.3 2.35 Fcn De	F0 -1.38461538 -1.37735849 -1.37037037 -1.36363666 -1.35714286 -1.35087719 -1.34482759 -1.33898305 -1.32786885 -1.32258065 -1.31746032 -1.3125 -1.30769231 -1.3030300 -1.29850746 fn F0
Zoom Taille	X 1.6 1.65 1.7 1.75 1.8 1.85 1.9 1.95 2 2.05 2.1 2.05 2.1 2.25 2.3 2.35 Fcn De X 1.825 1.85 1.85 1.9 1.95 2.1 2.25 2.35 X 1.85 1.85 1.85 1.95 1.85 1	F0 -1.38461538 1.37735849 -1.37735849 -1.37735849 -1.3663636 -1.35714286 -1.35087719 -1.34482759 -1.33898305 -1.32786885 -1.32258065 -1.31746032 -1.30303030 -1.29850746 fn F0 -1.35398230 -1.35398230
Zoom Taille	X 1.6 1.65 1.7 1.8 1.85 1.9 2 2.05 2.1 2.15 2.2 2.25 2.3 2.35 Fcn De X 1.85 1.85 1.85 1.85 1.85 1.85 1.85 1.85 1.85 1.85 1.85 1.85 1.85 1.85 1.85 1.85 1.85 1.85 1.95 1.85 1.	F0 -1.38461538 -1.37735849 -1.37037037 -1.36363636 -1.35714286 -1.35714286 -1.35087719 -1.34482759 -1.32786885 -1.32258065 -1.32258065 -1.32258065 -1.31746032 -1.31746032 -1.31746032 -1.310769231 -1.30303030 -1.29850746 fn F0 -1.35398230 -1.35087719 -1.34782609 -1.35087719 -1.34782609 -1.35087719 -1.34782609 -1.35087719 -1.34782609 -1.35087719 -1.34782609 -1.35087719 -1.34782609 -1.35087719 -1.34782609 -1.35087719 -1.34782609 -1.35087719 -1.34782609 -1.35087719 -1.35087719 -1.34782609 -1.35087719 -1.34782609 -1.35087719 -1.34782609 -1.35087719 -1.34782609 -1.35087719 -1.34782609 -1.35087719 -1.34782609 -1.35087719 -1.34782609 -1.35087719 -1.34782609 -1.35087719 -1.34782609 -1.35087719 -1.34782609 -1.35087719 -1.34782609 -1.35087719 -1.34782609 -1.35087719 -1.34782609 -1.35087719 -1.34782609 -1.35087719 -1.35087719 -1.34782609 -1.35087719 -1.35
Zoom Taille	X 1.6 1.65 1.7 1.8 1.85 1.9 2.05 2.1 2.25 2.3 2.35 Fcn De X 1.825 1.85 1.85 1.85 1.85 1.75 2.2 2.35 F.1 De X 1.85 1.9 1.95 1.9 1.95 1.9 1.15 1.9 1.15	F0 -1.38461538 -1.37735849 -1.37037037 -1.36636363 -1.35714286 -1.35087719 -1.34482759 -1.32898305 non défini -1.32786885 -1.32258065 -1.3125 -1.30769231 -1.3030303 -1.29850746 fn F0 -1.35398230 -1.35398230 -1.35087719 -1.34782609 -1.3478665666666666666666
Zoom Taille	X 1.6 1.65 1.7 1.75 1.8 1.85 1.9 1.95 2 2.05 2.1 2.25 2.3 2.25 2.3 2.35 Fcn De X 1.825 1.85 1.85 1.95 1	F0 -1.38461538 -1.37735849 -1.37735849 -1.37735849 -1.3663636 -1.35714286 -1.35087719 -1.34482759 -1.33898305 -1.32786885 -1.32786885 -1.32786885 -1.32786885 -1.32786885 -1.32786823 -1.30303030 -1.29850746 fn F0 -1.35398230 -1.35087719 -1.35398230 -1.35087719 -1.34782609 -1.3478685 -1.3478685 -1.3478685 -1.3478685 -1.3478685
Zoom Taille	X 1.6 1.65 1.7 1.75 1.8 1.85 1.9 1.95 2 2.05 2.1 2.15 2.2 2.25 2.3 2.35 Fcn De X 1.825 1.85 1.975 1.95 1.975 1.95 1.975 1.95 1.9755 1.9755 1.9755 1.9755 1.9755 1.9755 1.9755 1.9755	F0 -1.38461538 -1.37735849 -1.37037037 -1.3636366 -1.35714286 -1.35714286 -1.35087719 -1.34482759 -1.32786885 -1.32258065 -1.31746032 -1.32258065 -1.31746032 -1.30769231 -1.30303030 -1.29850746 fn F0 -1.35398230 -1.35087719 -1.35087719 -1.34782609 -1.34782609 -1.34782609 -1.34482759 -1.34488034 -1.33898305 -1.3613445 non děfini
Zoom Taille	X 1.6 1.65 1.7 1.8 1.85 1.9 2.05 2.1 2.25 2.3 2.35 Fcn De X 1.85 1.85 1.85 1.85 1.85 1.85 1.85 1.85 1.85 1.85 1.95	F0 -1.38461538 -1.37735849 -1.37037037 -1.36363636 -1.35714286 -1.35087719 -1.34482759 -1.34482759 -1.32258065 -1.32258065 -1.32258065 -1.32258065 -1.32258065 -1.32258065 -1.3258065 -1.3258065 -1.31746032 -1.31746032 -1.31746032 -1.31746032 -1.31746032 -1.31746032 -1.31746032 -1.31746032 -1.31746032 -1.3258719 -1.34782609 -1.34482759 -1.3478685 -1.3278685 -1.3278685 -1.32786
Zoom Taille	X 1.6 1.65 1.7 1.8 1.85 1.9 2.05 2.1 2.25 2.3 Fcn De X 1.85 1.9 1.95 2.2 2.35 Fcn De X 1.85 1.95 1	F0 -1.38461538 -1.37735849 -1.37037037 -1.36363636 -1.35714286 -1.35087719 -1.3482759 -1.32898305 non défini -1.32258065 -1.3125 -1.30769231 -1.3003030 -1.29850746 fn -1.35398230 -1.35087719 -1.34782609 -1.34782609 -1.34782609 -1.34782609 -1.34782609 -1.34782609 -1.34782609 -1.34782609 -1.34782609 -1.34782609 -1.34782609 -1.34782609 -1.34782609 -1.34782609 -1.34782609 -1.34782609 -1.34782609 -1.32786885 -1.32786885 -1.32258065 -1.3225805 -1.325805 -1.32585 -1.325805 -1.325805 -1.325805 -1.3258585 -1.325
Zoom Taille	x 1.6 1.65 1.7 1.85 1.9 1.95 2.05 2.33 2.35 Fcn De 1.85 1.85 1.85 1.85 1.85 1.85 1.875 1.95 2.025 2.05 2.075 2.1 2.125	F0 -1.38461538 -1.37735849 -1.37735849 -1.37735849 -1.37037037 -1.36636363 -1.35714286 -1.35087719 -1.34898305 non défini -1.32786885 -1.32258065 -1.31746032 -1.3125 -1.30769231 -1.30769231 -1.30769231 -1.35087719 -1.34782609 -1.35087719 -1.34782609 -1.35087719 -1.34782609 -1.35087719 -1.34782609 -1.35087719 -1.34782609 -1.34782605 -1.32786885 -1.32258065 -1.32258065 -1.322
Zoom Taille	x 1.6 1.65 1.7 1.75 1.8 1.85 1.9 2.05 2.1 2.25 2.3 2.25 2.3 2.35 Fcn 1.85 1.85 1.85 1.85 1.85 1.85 1.85 1.85 1.85 1.95 1.95 1.975 2.05 2.075 2.1 2.125 2.15 2.175	F0 -1.38461538 -1.37735849 -1.37037037 -1.36363636 -1.35714286 -1.35714286 -1.35087719 -1.34482759 -1.34482759 -1.32786885 -1.32258065 -1.31746032 -1.3125 -1.30769231 -1.30303030 -1.29850746 fn F0 -1.35398230 -1.3258065 -1.32258065 -1.32 -1.32258065 -1.32 -1.31746032 -1.31746032 -1.31746032
Zoom Taille	X 1.6 1.65 1.7 1.8 1.85 1.9 2.05 2.1 2.25 2.3 2.35 Fcn De X 1.85 1.85 1.85 1.85 1.85 1.85 1.85 1.85 1.85 1.95 1.95 1.95 1.95 1.95 1.95 1.95 1.95 1.95 1.95 2.05 2.15 2.05 2.15 2.05 2.15 2.25 2.3 2.35 Fcn De X 1.95 2.05 2.05 2.15 2.25 2.3 2.35 Tcn De X 1.95 1.95 1.95 1.95 1.95 2.05 2.05 2.15 1.95 1.95 1.95 1.95 2.05 2.05 2.15 1.95 1.95 1.95 2.05 2.05 2.05 2.05 2.05 2.15 2.25 2.25 2.35 1.95 1.95 1.95 2.05 2.15 2.	F0 -1.38461538 -1.37735849 -1.37037037 -1.36363636 -1.35714286 -1.35087719 -1.34482759 -1.34482759 -1.32786885 -1.32258065 -1.32258065 -1.31746032 -1.31746032 -1.35087719 -1.35087719 -1.35087719 -1.35087719 -1.35087719 -1.35087719 -1.35087719 -1.35087719 -1.34782609 -1.35087719 -1.34782609 -1.34782609 -1.34482759 -1.32786885 -1.3225805 -1.32258065 -1

Exemple : Diviser un domaine en deux parties de même aire

Deux frères héritent une terre qu'ils désirent partager équitablement. Le cadastre indique que cette terre a pour frontières approximativement les courbes

d'équations $y = 8 - \frac{x^2}{6}$ et $y = \frac{2^{x-1}}{10} - 8$, où x et y sont des distances en km

sont des distances en km.

S'ils construisent une clôture nord-sud, à quel endroit doivent-ils l'implanter ?

- 1. Entrer les fonctions en F1(X) et F2(X)
- 2. Utiliser les vues "Plot" et/ou "Num" pour établir qu'il faut construire la clôture entre $x \approx -9.8$ et $x \approx 7.2$.
- Utiliser Zone Signée pour évaluer l'aire de cette terre à 188.37 km² ou 18,837 ha. Chaque frère aura environ 94.185 km²
- 4. Eventuellement : avec Zone Signée essayer de trouver graphiquement la position de la clôture.
- 5. Définissez F3(X) comme suit :

$$F3(X) = \int_{-9.8}^{X} (F1(T) - F2(T)) dT$$

6. Utiliser la vue "Plot" pour estimer la valeur $x \approx -0.7$, puis utiliser la vue "Num" pour « zoomer » sur la solution : $x \approx -0.644$.

Signed ar	ea: 188.36941	9384	OK
v	E1	E2	E2
-1.2	FI 7 710222222	-7 07060260	9 2004206-4
-1.2	7.7103333333	-7.97909309	0.3004390E1
-1.1	7 798333333	-7 97667418	8 695192961
-1	7 8333333333	-7 975	8 85311251
-0.9	7 865	-7 97320566	9 0113480F1
-0.8	7 893333333	-7 97128254	9 1698650F1
-0.7	7.918333333	-7.96922139	9.3286288F1
-0.6	7.94	-7.96701230	9.4876045E1
-0.5	7.958333333	7.96464466	9.6467574E1
-0.4	7.973333333	7.96210709	9.8060524E1
-0.3	7.985	-7.95938738	9.9654545E1
-0.7			
Zoom		Size D	efn Column
<u> </u>		1 0.00 1 0	52
X	F1	FZ	F3
-0.65	7.929583333	7.96813598	9.4080923E1
-0.649	7.929799833	7.96811389	9.409682TET
-0.648	7.930010	-7.96809178	9.4112/19E1
-0.647	7.930231033	-7.90800900	9.4120017E1
-0.645	7 9306625	-7 96802536	9 416041451
-0.644	7.930877333	-7.96800319	9.41763131
-0.643	7.931091833	-7.96798100	9.4192212F1
-0.642	7.931306	7.96795880	9.4208111E1
-0.641	7.931519833	7.96793658	9.4224011E1
-0.64	7.931733333	-7.96791435	9.4239910E1
94 17631	31674		I
7000	51074	Cizo D	ofn Column
200m		size D	em column

Prolongements :

- Comment déterminer une clôture Est-Ouest ? Essayer de trouver à quel endroit.
- Les frères désirent diviser équitablement la terre en trois parties avec des clôtures Nord-Sud.

Dans cet exemple, nous avons utilisé l'Applet Fonction pour étudier graphiquement une situation et obtenir une valeur approchée de la solution d'un problème concret rencontré en classe.

L'Applet Courbes Paramétrées

L'applet Paramétrique vous donne tous les outils dont vous avez besoin pour l'étude des courbes paramétrées (représentation graphique et tableaux de valeurs de fonctions associées).

- Taper Apps L'Applet s'ouvre en vue "Symb".
- 2. Entrer $\frac{15\sin(T)}{4+\cos(T)}$ pour X1(T).
- 3. Entrer $4\cos(T) + 2$ pour Y1(T).
- 4. Taper $\underline{\text{Shift}} + \underline{\text{PotE}}_{\text{setup}}$ pour configurer la fenêtre de tracé. Il faut commencer ici par définir l'intervalle $\left[-\pi;\pi\right]$ du paramètre T et son palier, avant les intervalles de X et de Y.
- 5. Enfin taper Plot pour tracer la courbe.

Cet ovale de Granville ressemble plus à la section des tunnels modernes que le cercle usuel.

Il offre une base plus large à la voie de circulation, ainsi qu'une forme qui répartit mieux les contraintes externes (ne pas oublier que l'œuf est très résistant).

On peut représenter la voie de circulation par une autre courbe paramétrée comme suit :

- 6. Taper Symbol pour revenir aux équations.
- 7. Entrer $2\sqrt{9-T^2} 3$ pour X2(T).
- 8. Entrer 0 pour Y2(T).
- 9. Shift + Plot 2 pour configurer le tracer. Taper Page 1/2 puis décocher les axes en page 2.
- 10. Enfin taper Plot pour tracer la courbe.

Paramétrique	Vue symbolique	19:33
$\sqrt{X1(T)} = \frac{15 \times SIN(T)}{4 \times COS(T)}$		
4+COS(T)+2		
¥1(1)= 4+COS(1)+2		
X2(1)=		
¥2(1)=		
X3(1)=		
Entrer fonction		
4*COS(T)+2		
		OK
Paramétrique	Config. du tracé	19130
T Rng: -3.14159265359	3.14159265359	
T Palier: .0628318530718	3	
X Rng: -7.95	7.95	
Y Rng: -3.6	7.3	
X Tick: 1		
Y Tick: 1		
π		
50		
	Annul	OK
	Annul Annul	OK
	Annul	ОК
	Annul	ОК
		OK
	Annul	OK
	Annut	ок
		OK
	Annul	ОК
	Annul	<u>ок</u>
x1(T): 15*SIN(T)/(4+COS(T))	Annul	OK + +
X1(T): 15*SIN(T)/(4+COS(T)) Paramétrique	Annul Annul , Y1(T): 4+COS(T)+2	OK Menu 19136
x1(T): 15*SIN(T)/(4+COS(T)) Paramétrique $\sqrt{15+SIN(T)}$	Annul Annul , Y1(T): 4+COS(T)+2	OK 1 + +
x1(T): 15*SIN(T)/(4+COS(T)) Paramétrique $\sqrt{x1(T)} = \frac{15*SIN(T)}{4+COS(T)}$	Annul Annul	OK Menu 19:36
x1(T): 15*SIN(T)/(4+COS(T)) Paramétrique $\sqrt{x1(T)=\frac{15+SIN(T)}{4+COS(T)}}$ Y1(T)= 4+COS(T)+2	Annul Annul , Y1(T): 4+COS(T)+2	OK Menu 19136
x1(T): 15*SIN(T)/(4+COS(T)) Paramétrique √ X1(T)= 15*SIN(T) 4+COS(T) Y1(T)= 4+COS(T)+2 X2(T)=	Annul Annul , Y1(T): 4+COS(T)+2 Vue symbolique	OK Menu 19:36
X1(T): 15*SIN(T)/(4+COS(T)) Paramétrique Y ✓ X1(T)= 15*SIN(T) 4+COS(T) Y1(T)= 4+COS(T)+2 X2(T)= Y2(T)=	Annul Annul , Y1(T): 4+COS(T)+2	OK Menu 19136
X1(T): 15*SIN(T)/(4+COS(T)) Paramétrique Y √ X1(T)= 15*SIN(T) 4+COS(T) Y1(T)= 4+COS(T)+2 X2(T)= Y2(T)= X3(T)=	Annul Annul Annul Annul	OK Menu 19136
X1(T): 15*SIN(T)/(4+COS(T)) Paramétrique $\sqrt{X1(T)} = \frac{15*SIN(T)}{4+COS(T)}$ $\sqrt{X1(T)} = \frac{15*SIN(T)}{4+COS(T)}$ $\sqrt{Y1(T)} = 4*COS(T)+2$ X2(T) = $\sqrt{X2(T)} =$ $\sqrt{X2(T)} =$ Fortrer fonction	Annul Annul Annul Vit(T): 4+COS(T)+2	OK Menu 19136
X1(T): 15*SIN(T)/(4+COS(T)) Paramétrique Y $\sqrt{X1(T) = \frac{15*SIN(T)}{4+COS(T)}}$ Y1(T) = 4*COS(T)+2 X2(T) = X3(T) = Entrer fonction 2*(9-T ² -3	Annul Annul Annul Annul Vue symbolique	OK Menu 19136

L'Applet Courbes en Coordonnées Polaires

L'applet Polaire vous donne tous les outils dont vous avez besoin pour l'étude des courbes en coordonnées polaires (représentation graphique et tableaux de valeurs de fonctions associées).

- Taper Apps Info et choisir l'icône Polaire. L'Applet s'ouvre en vue "Symb".
- 2. Entrer $\frac{2\cos(\theta)}{1-\cos(\theta)}$ pour R1(θ).
- Taper Shift + Plot pour configurer la fenêtre de tracé.
 Commencer ici aussi par définir l'intervalle [-π;π]
 du paramètre θ et son palier, avant les intervalles de X et de Y.
- 4. Enfin taper \Pr_{uservp} pour tracer la courbe.

Puisque cette courbe ressemble à la trajectoire d'un satellite passant observer une planète, représentons cette planète.

On peut représenter celle-ci en coupe par un cercle dont l'équation, en coordonnées polaires, est d'un type bien connu :

- 5. Taper Symbol pour revenir aux équations.
- 6. Entrer $\frac{3}{4}\cos(\theta)$ pour R2(θ).
- 7. Enfin taper \Pr_{setup} pour tracer la courbe.
- 8. Pour être sûr que le cercle soit affiché par un cercle, aller dans Menu, puis Zoom, puis choisir ⁹Carré.
- 9. Taper **COK**, et le cercle est retracé.

Version 2.3

L'Applet Explorateur Trinôme

L'applet Explorateur Quadratique vous donne tous les outils dont vous avez besoin pour l'étude des paraboles représentant des trinômes du second degré d'équations canoniques $y = a(x + h)^2 + v$.

- Taper Apps L'Applet s'ouvre en vue "View", la seule.
- 2. Un menu apparaît en bas de l'écran.
 Eq : pour modifier l'équation
 Graph : pour modifier la courbe
 Incr : pour choisir l'incrément de modification
 Niv : pour choisir le niveau de complexité du test
 Test : pour lancer le mode "Test"
- 3. Essayer le mode "Graph" et modifier la position de la courbe avec les flèches (•) (•) (•).
 Tester *l'écran tactile* vraiment interactif.
- 4. Modifier la forme et l'orientation de la courbe à l'aide de ⁺/_{Ans}: ou encore de ^{+/-}/_K. Là encore l'écran tactile *multi-point* est très « agréable ».
- 5. Taper pour passer en mode "Equation"

Cet explorateur permet aussi de tester l'élève en lui proposant une courbe et en lui demandant de donner les paramètres de l'équation de cette parabole.

- 7. Taper un certain nombre de fois sur **Niv** pour choisir le niveau de complexité de 1 à 4.
- 8. Taper **Test** pour passer en mode "Test".
- 9. Choisir la difficulté ou Ardu ou Facile.
- 10. La courbe s'affiche. Ajuster les paramètres a, h ou v comme ci-dessus en 6. **Rep** pour vérifier.

L'Applet Explorateur Trigonométrie

L'applet Explorateur Trigonométrie vous facilite l'étude des fonctions trigonométriques sin et cos donc des courbes d'équations $y = a \sin(x + h) + v$ ou $y = a \cos(x + h) + v$.

- 1. Taper Apps et choisir l'icône Explorateur Trig. L'Applet s'ouvre en vue "View", la seule.
- Un menu apparaît en bas de l'écran permet de : Graph : de basculer entre courbe et équation SIN : de basculer entre les fonctions sin et cos Rad : de basculer entre radians et degrés Orig : de basculer position et forme de la courbe Test : de lancer le mode "Test" π/6 : de choisir l'incrément de la phase h.
- Essayer le mode "Graph" et modifier la position de la courbe avec les flèches (●) ●.
 Tester *l'écran tactile* vraiment interactif.
- 4. Modifier la forme et l'orientation de la courbe à l'aide de https://www.sec.entropy.org ou encore de https://wwww.sec.entropy.o
- 5. Graph+SIN pour passer en mode "Equation".
- Avec (●) (●) choisir le paramètre a, h ou v à modifier puis le modifier avec (●) (●) ou (^{+/-}_M).

Cet explorateur permet aussi de tester l'élève en lui proposant une courbe et en lui demandant de donner les paramètres de l'équation de cette courbe.

- 7. Taper **Test** pour passer en mode "Test".
- 8. Choisir le niveau de complexité de 1 à 5.
- 9. La courbe s'affiche. Ajuster les paramètres a, h ou v en procédant comme ci-dessus en 6.
- 10. Vérif pour savoir si on s'est trompé, sinon Rep.

L'Applet Graphiques Avancés

L'Applet Graphiques Avancés est destiné à représenter des expressions dans le plan (x, y). On peut "grapher" les équations ou les inéquations implicites les plus diverses avec opérateurs logiques.

1. Taper Apps puis toucher l'icône Graphiques Avancés.

L'Applet s'ouvre en vue "Symb". 10 champs (V1-V9 et V0) sont disponibles pour entrer les expressions mathématiques.

- 2. En V1, entrer $X^2 + 3Y^2 + 2XY = 81$
- 3. Toucher le carré coloré pour choisir une teinte pour le graphe de l'expression.
- 4. Taper Shift + Clother pour configurer la fenêtre.
- 5. Taper Plot pour voir le graphe de S1
- 6. Menu ouvre le menu en bas de l'écran

Le menu est tout à fait semblable au menu de la vue "Plot" de l'Applet Fonction.

Ce que vous pouvez faire :

- Touchez n'importe où sur l'écran et le curseur se déplacera à cet endroit.
- Avec , et , et , vec , ven avant ou en arrière autour du curseur.
- Touchez et déplacez la fenêtre graphique comme vous voulez.
- Tapez Defn pour éditer l'expression.
- Taper Defini pour ouvrir l'éditeur et modifier l'expression V1 courante.
- 8. Taper **Edit** et changer = en <.

<u>Astuce</u>: taper $\underbrace{\text{Shiff}}_{\leq z, \star} + \underbrace{\begin{smallmatrix} 6 \\ s \geq z \\ w \end{smallmatrix}$ pour ouvrir la table des opérateurs de relation et choisir <.

Taper version pour "grapher" l'inéquation puis taper
 pour quitter l'éditeur.

L'Applet Graphique Avancé peut donc "grapher" tout type d'expression mathématique. Le tableau ci-dessous donne quelques exemples.

Expressions	Exemples	Remarques
Fauations	$x^2 + 3y^2 + 2xy - 81 = 0$	Ellipse inclinée
Polynomiales	$4y^4 - 5x^2y^2 + x^4 = 0$	Décomposition
1 0191101110105		en facteurs
Demi-Plan	2x + 3y < 5	
	x+y = x + y	Cas Particulier
Inéquations diverses	$\left(\lfloor 5x \rfloor \text{MOD } 2 \ge \lfloor 5y \rfloor \text{MOD } 2\right) \text{ AND } x^2 + \left(\frac{5}{4}(y+1) - \sqrt{ x }\right)^2 < 10$	Voir ci-dessous
	$\left \cos(x)\right < 1 - \sin(y - 3)$	Voir ci-dessous

$$|x+y| = |x|+|y|$$

L'élève a ici enfin l'illustration graphique d'un théorème bien connu : une telle égalité n'a lieu que si et seulement si x et y sont de même signe

 $\sin(x) < \sin(y)$

 $\left|\cos(x)\right| > 1 - \sin(y - 3)$

On peut demander à l'élève pourquoi les carrés précédents sont-ils remplacés par des disques ?

(il s'agit de l'expression mathématique la plus longue du tableau ci-dessus)

L'Applet Géométrie Dynamique

L'Applet Géométrie a la puissance d'un logiciel de géométrie dynamique et le moteur CAS intégré de la HP Prime vous apporte un outil de géométrie analytique pour prouver vos conjectures.

Taper Apps et toucher l'icône Géométrie. L'Applet s'ouvre en vue "Plot". En bas de l'écran apparaît un menu contextuel qui vous offre de quoi créer les différents objets géométriques :

- Zoom : "zoomer" ou "dé zoomer".
- **Point** : point libre, point lié à un objet, milieu, intersection, etc.
- Line : segments, droites, tangentes, perpendiculaires, etc.
- **Polygon** : triangles, quadrilatères et divers polygones.
- **Curve** : cercles et autres coniques, lieux de points, graphes de fonctions, etc.
- **Transfor(m)** : translation, réflexion, dilatation, etc.

Ce que vous pouvez faire :

- Touchez et déplacez la fenêtre graphique comme vous voulez.
- Avec [_______ et [_______ « zoomez » en avant ou en arrière autour du curseur.
- Tapez sur n'importe quel point puis sur
 Enter *Enter* pour le sélectionner.
- Déplacez le point sélectionné du bout du doigt.
- Avec Symbol vous pouvez voir et éditer le script des différents objets créés.
- Avec vous pouvez définir des distances, angles, aires ou bien des booléens (tests) en rapport avec les divers objets créés dans la vue "Symb".

Exemple I : Explorer les Quadrilatères

Avec l'Applet Géométrie on crée un quadrilatère puis les milieux des côtés de ce quadrilatère qui forment à leur tour un nouveau quadrilatère dont nous allons mettre en évidence les propriétés.

 Taper Apps L'Applet s'ouvre dans sa vue "Plot".

Taper Polygon et choisir ²Quadrilatère.

Taper un point de l'écran puis <u>Enter</u> pour choisir le premier sommet du quadrilatère. Continuer de même pour choisir les trois autres sommets, puis <u>Esc</u> pour quitter la commande Quadrilatère.

L'écran montre maintenant un quadrilatère appelé E, constitué des points A, B, C, et D.

- Taper Point et choisir ³Milieu. Taper l'écran près du milieu de [AB] puis sur Enter pour sélectionner ce point. Faire de même pour créer les milieux des autres segments. Puis Esc pour quitter la commande Milieu.
- 5. Répéter les étapes 2 et 3 pour créer le quadrilatère O constitué des points *K*, *L*, *M*, et *N*.

L'écran présente alors les deux quadrilatères. Nous allons choisir les objets à afficher et leur affecter une couleur avant de commencer nos explorations.

- 6. Taper we pour passer en vue "Symb" de l'Applet. Ici, chaque objet géométrique créé est défini dans un script. Les objets cochés sont affichés dans la vue "Plot". Décocher chaque segment en le choisissant par et puis en touchant . De même décocher les segments [*KL*], [*LM*], [*MN*], et [*NK*].
- 7. Ces segments étant cachés, revenir à la vue "Plot" avec pour choisir la couleur des quadrilatères. Taper pour ouvrir le menu contextuel et sélectionner ³Modifier la Couleur. Un menu s'ouvre avec les divers objets créés. Taper sur GE:=quadrilateral(GA,...; puis sur le carré rouge dans le nuancier.
- Répéter l'étape 7. pour attribuer le bleu au quadrilatère intérieur. Il est possible de parcourir la liste des objets avec le doigt GO:=quadrilateral(GK,....

- Taper pour ouvrir la vue "Num" de l'Applet. Ici nous allons définir des tests et des mesures liés aux objets géométriques créés.
- 10. Taper New pour créer un nouvel objet numérique, puis mus puis choisir ²Tests et ^Ais_parallelogram. La commande est collée dans la ligne de commande. Se rappeler que le nom du quadrilatère interne est GO. Entrer "GO" entre les parenthèses et taper <u>Enter</u>. Cocher et ce test sera affiché dans la vue "Plot".
- Taper pour voir les constructions et le résultat du test. A l'aide du doigt déplacer la construction pour bien la séparer du test.

Nous sommes prêts à explorer cette situation géométrique.

- Sélectionner en touchant l'écran l'un des sommets du quadrilatère externe puis taper sur Enter. On peut maintenant déplacer ce sommet sur l'écran avec le doigt. Pendant qu'on déplace le sommet on remarque que le test is_parallelogram garde sa valeur de 1, signifiant que *KLMN* reste un parallélogramme.
- Le test renvoie, en fait, l'une des valeurs suivantes :
 0 : ce n'est pas un parallélogramme
 - 1 : c'est seulement un parallélogramme
 - 2 : c'est un losange
 - 3 : c'est un rectangle
 - 4 : c'est un carré

Cependant il y a un autre moyen d'étudier les effets des propriétés de *ABCD* sur le parallélogramme *KLMN*.

- 3. Taper pour revenir à la vue "Symb". On peut alors imposer les coordonnées des points *A*, *B*, *C*, et *D*.
- 4. Sélectionner GA, taper $\fbox{Control}$ et entrer les coordonnées (-3;3) puis taper $\fbox{Control}$.

Entrer de même B(3;3), C(3;-3) et D(-3;-3). ABCD est maintenant un carré

- 5. Taper Plot pour revenir à la vue "Plot".
- 6. L'écran montre que is_parallelogram a pour valeur 4, ce qui signifie que *KLMN* est aussi un carré.

Il semble que *KLMN* soit toujours un parallélogramme, peu importe où se trouvent les points A, B, C, et D (tant qu'ils ne sont pas alignés !).

Pour le prouver, créons les diagonales [AC] et [BD].

7. Taper Line et choisir ¹Segment. Toucher le point A et taper Enter. Toucher le point C et taper Enter.
 Répéter ceci pour les points B et D.Taper Esc pour quitter Line.

Preuve : Puisque le segment [*KL*] joint les milieux de deux côtés du triangle *ABC*, on a $\overrightarrow{KL} = \frac{1}{2}\overrightarrow{AC}$. De même, [*NM*] joint les milieux de deux côtés du triangle *ADC*, et on a $\overrightarrow{NM} = \frac{1}{2}\overrightarrow{AC}$. Ainsi $\overrightarrow{KL} = \overrightarrow{NM}$ ce qui prouve que *KLMN* est « toujours » un parallélogramme.

8. Taper Apps et Save pour sauver cette construction et tout son contexte sous le nom Geo_Quad par exemple.

Avec les fonctionnalités de l'Applet Géométrie les élèves peuvent tester d'autres conjectures :

- Si ABCD est un losange, alors KLMN est un rectangle.
- Si ABCD est un rectangle, alors KLMN est un losange.
- Si ABCD est un trapèze isocèle, KLMN est un losange.
- Si les diagonales de *ABCD* sont perpendiculaires, *KLMN* est un rectangle.
- Si les diagonales de *ABCD* ont la même longueur, *KLMN* est un losange.

Exemple II : Cercle et Tangente

Ici, nous construisons des objets géométriques usuels (un cercle de centre donné passant par un point donné, une tangente à ce cercle, une droite) et le moteur CAS nous donne leurs équations.

Taper Apps, Réinit. et over pour réinitialiser l'Applet.

- 1. Taper **Courbe** puis ¹Cercle.
- 2. Choisir le centre A en touchant l'écran puis $\begin{bmatrix} Enter \\ z \end{bmatrix}$
- 3. Choisir de même un point *B* du cercle puis $\boxed{\frac{Enter}{z}}$. Le cercle *C* s'affiche alors. Choisir sa couleur (\boxed{Enter}).
- 4. Taper pour éditer, si besoin, les coordonnées des deux points *A* et *B* dans le script de la vue "Symb".
- 5. Taper \square puis taper \square and D de *B* par rapport à *A*.
- 6. Choisir le centre de la symétrie en tapant sur *A* et $\boxed{\frac{Enter}{z}}$, puis taper sur B et $\boxed{\frac{Enter}{z}}$. Le point *D* ainsi déterminé s'affiche, sur le cercle *C* bien sûr.
- 7. Taper **Droite** puis ⁵Plus et ⁵Tangente pour construire la tangente au cercle C au point D.
- 8. Toucher la courbe (ici le cercle *C*) et \boxed{Enter}_{z} , puis taper sur *D* et \boxed{Enter}_{z} . La tangente *E* s'affiche alors. Choisir sa couleur, comme précédemment avec \boxed{Enter}_{Vestor} .

On obtient la figure en haut à droite et chacun des objets créés est défini par une ligne du script de la vue "Symb".

- 9. Créer un point G en tapant Point et ¹Point puis taper l'écran et Enter, puis éditer ses coordonnées (Smbel)
- 10. Pour créer la droite (*GA*), taper **Droite** puis ³Droite. Toucher les points *G* et $\boxed{\operatorname{Enter}_{z}}$ puis *A* et $\boxed{\operatorname{Enter}_{z}}$.

Le calcul formel CAS nous permet maintenant d'obtenir des équations du cercle et des droites qu'on a construits.

- 11. Taper vis puis Nouv. pour créer un nouvel élément. Taper mos puis ¹Mesure, et sélectionner ⁸equation. Entre parenthèses, entrer *GC*, nom du cercle qu'on peut chercher par le menu vers et ⁵Courbes. Puis vers.
- 12. Faites de même avec la tangente E et la droite (GA).
- 13. Cocher les équations qu'on veut voir en vue "Plot".

Exercice : Créer la tangente symétrique de E par rapport à la droite (GA) et calculer l'affixe du point de tangence L.

Exemple III : Pente et Nombre Dérivé d'une Fonction

Dans cette activité, nous construirons, pas à pas, une représentation de la fonction dérivée d'une fonction, à partir du nombre dérivé, c'est-à-dire le coefficient directeur (« pente ») de la tangente.

- La précédente activité ayant été sauvée, taper
 Apps touchez l'icône Géométrie et taper
 Reset pour réinitialiser cet Aplet en confirmant par
 OK
 .
- Taper Curvel, choisir ⁶Plot, et sélectionner
 ¹Function. S'il y a des fonctions définies dans l'Aplet Fonction, une fenêtre propose de choisir une de ces fonctions ou d'en créer une. Sélectionner New.
- Un éditeur s'ouvre avec plotfunc(et un menu contextuel apparaît en bas d'écran avec x et y.

Entrer la fonction définie par $\frac{x^3}{2} - \frac{x^2}{2} - 3x + 1$ après la parenthèse et taper CK. Le graphe de la fonction est tracé. Taper x to « zoomer ».

<u>Note</u> : dans l'Applet Géométrie **x** minuscule est la variable indépendante pour une fonction.

- 4. Taper Point et sélectionner ²Point On. Taper sur le graphe (il devient bleu quand il est sélectionné) puis taper \boxed{Enter}_{z} . Le point *B* apparaît, défini comme un point du graphe. Taper \underbrace{Esc}_{z} pour quitter Point.
- 5. Taper Line, puis ⁵More, et sélectionner
 ⁵Tangent. Taper sur la courbe et presser
 Enter . Puis taper sur le point *B*. Un message apparaît en bas de l'écran : tangent(GA,GB).
 Taper Enter . La tangente à la courbe au point *B* est tracée.

- 6. Taper sur le point *B* puis sur $\stackrel{\text{Enter}}{\approx}$ pour le sélectionner. On peut déplacer le point *B* le long de la courbe avec le doigt ou taper pour un autre emplacement du point *B*. La tangente suit !
- 7. Taper Symbol pour ouvrir la vue "Symbol". Tous les objets créés en vue "Plot" sont définis ici dans le script.
- Taper New pour créer un nouvel objet. Taper Cmds puis ¹Point et sélectionner ⁵Point. La commande point() apparaît sur la ligne de commande.

On peut maintenant définir les coordonnées de ce point. L'abscisse x sera celle du point B et l'ordonnée sera la pente de la tangente en B. Ce nouveau point D sera donc un point de la courbe de la fonction dérivée.

- 9. Taper puis puis pour ouvrir le Catalogue. Taper Vars pour les commandes commençant par A et trouver abscisse. Taper
 OK. Dans la parenthèse, entrer GB. Après la parenthèse de droite, entrer et revenir au Catalogue pour les commandes slope et tangent. Voir la définition complète sur l'écran à droite.
- 10. Taper Point pour revenir à la vue "Plot".
 Pendant qu'on déplace le point *B*, on peut voir que le point *D* se déplace aussi en suivant la courbe de la fonction dérivée.

Nous pouvons utiliser cette construction.

	(Geom	etry Sy	mbolic	: View		10:44
√ GA:=µ √ GB:=e √ <mark>GC:=t</mark>	olotfu elem ange	unc(x^ ent(G/ nt(GA	3/2−x′ A,−1.7 ,GB)	\2/2-3* 736390	×x+1) 08723)		
Edit √ GA:=r	v v	Geom	New etry Sy 3/2-x/	/mbolic			Delete
√ GB:=€	lem	ent(G/	A,-1.8	162852	2512)		
√ GC:=t √ GD:=t	ange point	nt(GA (absci	ssa(GB),slope	(tange	nt(GA	A,GB)))
✓ GC:=t ✓ GD:=	sciss	nt(GA (absci	,slope(),slope	(tange t(GA,G	nt(G <i>A</i>	4,GB)))
√ GC:=t √ GD:=p point(ab Cmds	ange point	nt(GA (absci	ssa(GB ,slope(),slope tangen y	t(GA,G	nt(GA iB))) icel	A,GB))) OK
v GC:=t v GD:=r point(ab Cmds	sciss	nt(GA (absci	slope(x),slope tangen y	t(GA,G Can	iB))) cel	OK
✓ GC:=t ✓ GD:=r ✓ GD:=r	sciss	nt(GA (absci	slope(×),slope tangen y	t(GA,G Can	iB))) cel	OK 4. 2.
<pre> GC:=t GC:=t GD:= GD:= Cmds Cmds</pre>	sciss	nt(GA (absci	,slope(),slope tangen y	t(GA,G Can	iB))) cel	OK
<pre> GC:=t GC:=t GD:=p GD:=p</pre>	sciss	a(GB)	,slope(tangeni y	(tange t(GA, G Can	iB))) cel	OK

- Revenir à la vue "Symb" et créer un nouvel objet GE:=trace(GD). Cf à droite.
- Revenir à la vue "Plot", sélectionner le point *B* et le déplacer. A chaque nouvel emplacement du point *B*, une croix marque l'emplacement du point *D*. On peut alors voir se dessiner la courbe de la fonction dérivée. Cf à droite.
- 3. Décocher GE dans la vue "Symb" pour effacer les traces de *D*.
- Revenir à la vue "Symb" et créer GF. Définir GF:=locus(GD,GB), which means the locus of point D as point B moves along the graph. Ce nouvel objet représente en fait la fonction dérivée, comme on peut le voir en bas à droite. Cocher ou non GF dans la vue "Symb" fait apparaître ou non cette courbe.

Nous avons maintenant une construction qui nous permet de visualiser la fonction dérivée de plusieurs manières :

- Déplacer le point *B* avec la tangente en ce point.
- Déplacer le point *B* et voir se tracer fonction dérivée.
- Explorer ainsi plusieurs fonctions en modifiant le script de la vue "Symb".

Ainsi comme nous pouvons le voir sur la figure de droite, nous pouvons revenir à la vue "Symb" puis définir GA comme le graphe de n'importe quelle autre fonction.

La trace et/ou le lieu du point *D* se modifient immédiatement. Les élèves ont là un bel outil pour visualiser la fonction dérivée.

Bien sûr nous pouvons sauvegarder cet Applet et son contexte pour l'utiliser plus tard.

Exemple IV : Réflexion et Fonction « Inverse »

Dans cette construction, considérons la courbe représentative de la fonction F2 étudiée dans l'Applet Fonction. Nous construirons la tangente la tangente à la courbe au point d'inflexion (abscisse 0) puis nous créerons la transformée de cette courbe par la réflexion d'axe la tangente que l'on vient de tracer. Le moteur CAS de la HP Prime nous permettra à nouveau de trouver facilement des équations de la tangente et de la courbe symétrique. Cela permet à l'élève de vérifier les résultats de ses calculs.

- 1. Sauvegarder, si on le désire la précédente activité, et réinitialiser l'Applet Géometrie.
- 2. Taper Apps, **Réinit.** puis ver pour réinitialiser l'Applet.
- Taper Curve puis choisir ⁶Plot, ¹Function et enfin récupérer dans la boîte de dialogue la fonction F2=(1/3*X^3-X+1) de l'Applet Fonction. La courbe représentative se trace.
- 4. Taper et choisir la couleur de la courbe.
- 5. Taper Point puis ²Point On puis choisir le point B d'abscisse 0 sur cette courbe.
- 6. Dans la vue "Symb" vérifier l'expressionGB:=element(GA,0) et l'éditer si besoin.
- 7. Dans la vue "Plot" créer la tangente en B en tapant Line, puis ⁵More, puis ⁵Tangent. Toucher la courbe et Enter / pointer le point *B* le message tangent(GA,GB)apparaît et Enter / pour tracer la tangente.
- De retour dans la vue "Plot", taper Transfor puis ²Reflection. Toucher la tangente et taper ^{Enter}, pour choisir l'axe de la réflexion.

Enfin toucher la courbe et taper $\begin{bmatrix} Enter \\ z \end{bmatrix}$ La courbe transformée se trace.

- Dès qu'on sélectionne un objet il doit devenir bleu clair pour indiquer que la sélection a bien été faite. Taper se pour quitter la commande transfor
- 10. Taper pour choisir la couleur de la courbe transformée (rouge ici).

La vue "Num" de l'Applet Géométrie est le cadre dans lequel vous faites les mesures et des calculs divers. Cocher les résultats des mesures et des calculs pour les faire apparaître dans la vue "Plot".

- 11. Taper vour pour ouvrir la vue "Num". Taper Nouv. pour créer un nouvel objet.
- 12. Taper \bigcirc pour voir les commandes, puis choisir ¹Mesure, et sélectionner ⁸equation. Entre parenthèses, entrer GC (nom de la tangente en *B* à la courbe) et taper \bigcirc .
- 13. Répéter l'étape 8 pour obtenir l'équation de la courbe réfléchie (GD).
- 14. Cocher la seconde ligne pour qu'elle apparaisse dans la vue "Plot".
- 15. Taper Lot pour revenir à la vue "Plot" et voir la courbe, sa tangente en *B*, la courbe réfléchie par rapport à cette tangente et l'équation de la courbe réfléchie !
- 16. Avec le doigt on peut déplacer la figure pour bien séparer les courbes de l'équation.

On peut utiliser une telle construction pour montrer, par exemple, que le logarithme népérien est bien la fonction réciproque de l'exponentielle, en utilisant une réflexion d'axe la droite d'équation y = x.

L'Applet Tableur

L'Applet Tableur possède les fonctionnalités usuelles qu'on attend d'un tableur. Mais avec la HP Prime, le tableur intègre la puissance du Calcul Formel (CAS).

L'Applet Tableur peut ainsi afficher une valeur approchée pour le résultat d'une formule, ou bien à l'aide du CAS, renvoyer un résultat numérique exact ou un résultat symbolique.

Des exemples suivent pour illustrer cette fonctionnalité.

Taper Apps et toucher l'icône Tableur. L'Applet s'ouvre en vue "Num" (c'est sa seule vue). Un menu contextuel apparaît :

- Format : pour ouvrir le menu Format
- Aller : pour aller à une cellule donnée
- Sélecti : pour définir une zone
- Aller : détermine quelle cellule est choisie quand on tape
- Affich : affiche le contenu de la cellule en 2D

Ce que vous pouvez faire :

- Se déplacer avec le doigt dans le tableau
- Taper l'écran et maintenir une pression avec le doigt pour définir un bloc de cellules
- Définir la largeur d'une colonne par l'écart horizontal de deux doigts
- Définir la hauteur d'une ligne par l'écart vertical de deux doigts
- Entrer un contenu pour une cellule (nombre, texte, expression d'une formule)
- Définir une formule pour une ligne, pour une colonne ou toute la feuille de calcul.

		Tableur		19:24
100 A	В	IC	D	E
1				
2				
3	- TX			
4				
5				
6				
7				
8				
9				
10				
11				
12				
13				
a al		1	-	1
[Format	Aller Sél	ecti Allei	

	Tableur					
Format	c	D	E			
1 Nom						
2Format nombre >	√1 Auto					
3Taille police →	2 Standard					
4 Couleur 💦 👌	3 Fixe					
5Remplissage >	4 Scientifique					
6Alignement ↔ →	5Ingénieur	1	-			
7 Alignement 🕽 🕠		1				
8Afficher " " ,						
Format	Aller Sélect	i Aller				

Comme introduction à cet Applet Tableur, nous allons faire ici un simple exercice qui illustre l'utilisation ou non du CAS.

- 1. Sélectionner la cellule A1, entrer 9/21, et taper $\boxed{\frac{\text{Enter}}{z}}$. Le résultat est formaté (Fixes 6).
- Sélectionner la cellule B1, entrer 9/21, mais avant de taper Enter, toucher CAS en bas de l'écran. Le point à côté de CAS montre que le CAS est maintenant actif.

A1 est évaluée numériquement, mais B1 est simplifiée en utilisant le CAS. Sélectionner B1 pour voir l'acronyme CAS en début de formule.

Exemple I : Le Triangle de Pascal

Entrons une seule formule pour tout le tableau.

- Taper sur le coin en haut à gauche pour sélectionner le tableau entier. Taper Shiff : pour commencer la formule. Puis taper , et Math, puis
 ⁵Probabilité, et ²Combinaison.
- 2. Entre les parenthèses, entrer Row,Col-1.

<u>Astuce</u>: Row et Col sont des variables du Tableur. Pour obtenir la variable Row, taper $Vars_{Churs}$, puis App et Tableur , puis ¹Numériq, et ³Row.

De même manière, aller chercher Col.

On peut aussi taper Col et Row lettre par lettre, avec

 $\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ pour les majuscules et \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ + \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ pour les \end{array} \\ minuscules. \end{array}$

- 3. Taper pour voir le tableau se remplir avec le Triangle de Pascal.
- 4. Utiliser votre doigt pour faire défiler le tableau.

Pour modifier l'affichage utiliser le menu Format ou vos doigts pour la largeur des colonnes.

		Table	eur			11.4	7 1
hp A	В	С		D		E	
1 42857	3/7						
3			-	-			
4		1.17				0	
5				_		-	
7			-				-
8				-			
9							
10				-		-	-
12							
13							
CR69/21		_	_				_
Edit	Format	Aller	Sélec	ti A	ller↓	Affic	h
1.0		Table	eur			19:3	4
2001	la	IC		D		E	110
Mat	n						
1 Nombre	s >						
2 Arithmét	ique > 1 Fa	ctoriel	-	-		-	-
3 Trigonon	nétrie 200	mhinais	ion				
4 Lhunark -	linua	www.ukast	_				
+ Hyperbo	inque > 3Pe	mutati	on	-		+	
5 Probabili	ité ⇒ 4Al	éatoire	,				
6 Liste	> 5 De	ensité	>			_	
7 Matrice	> 6CL	umulatif		-		-	_
8 Snárial	ZIn	Varca					
o special	, , , , , ,	verse	-			-	
Math	CAS	App	Utili	. 0	atlg	OK	
		Table	arre	~		19:3	5 п
167 A		Table	zui	D		F	γU
	Maga awa	n –	-	-	_	-	-
1	vars ap	2					
1 2 Tab	leur	>	1 Num	ériq⇒	1 ColWi	dth	
1 Tab 2 Tab 3 Stat	leur s – 1Var	, ,	1 Num 2 Mode	ériq › es ›	1 ColWi 2 RowH	dth eight	
1 Tab 2 Tab 3 Stat 5 Gra	leur s – 1Var phiques ava	> >	1 Num 2 Mode	ériq » es	1 ColWi 2 RowH	dth eight	
1 Tab 2 Tab 3 Stat 5 Gra	leur s – 1Var phiques ava	ncés -	1 Num 2 Mode	ériq » es »	1 ColWi 2 RowH 3 Row	dth eight	
1 Tab 2 Tab 3 Stat 5 Gra 7 Géo	leur s – 1Var phiques ava ométrie	incés -	1 Num 2 Mode	ériq > es >	1 ColWi 2 RowH 3 Row 4 Col	dth eight	
1 Tab 2 Tab 3 Stat 5 Gra 6 Gra 7 Géo 8 Gra	leur s – 1Var phiques ava ométrie phi_Deco) incés - 	1 Num 2 Mode	ériq » es »	1 ColWi 2 RowH 3 Row 4 Col 5 Cell	dth eight	
1 1 2 Tab 3 Stat 4 Stat 5 Gra 6 Gra 7 Géo 9 Gra 10 Exp	leur s – 1Var phiques ava ométrie phi_Deco lorateur trig) incés, - , -	1 Num 2 Mode	ériq »	1 ColWi 2 RowH 3 Row 4 Col 5 Cell	dth eight	
1 1 2 Tab 3 Stat 5 Gra 6 Gra 7 Géo 9 Gra 10 Exp 11 Exp	vars ap leur s – 1Var phiques ava ométrie phi_Deco lorateur trig lor, quadrat	> incés > - - 	1 Num 2 Mode	ériq » es »	1 ColWi 2 RowH 3 Row 4 Col 5 Cell	dth eight	
1 1 2 Tab 3 Stat 5 Gra 6 7 7 Géo 8 Gra 10 Exp 11 Exp 12 Exp	vars ap leur s – 1Var phiques ava métrie phi_Deco lorateur trig lor. quadrat	incés	1 Num 2 Mode	ériq » es »	1 ColWi 2 RowH 3 Row 4 Col 5 Cell	dth eight	
1 1 2 Tab 3 Stat 5 Gra 6 Gra 7 Géo 9 Gra 10 Exp 11 Exp 12 Exp 13 Fon	vars ap leur s - 1Var phiques ava métrie phi_Deco lorateur trig lor. quadrat ction	, ancés, - , - , - , - , - , - , - , - , - , -	1 Num 2 Mode	ériq > es >	1 ColWi 2 RowH 3 Row 4 Col 5 Cell	dth eight	
1 1 2 Tab 3 Stat 5 Gra 6 Gra 7 Géo 9 Gra 10 Exp 11 Exp 12 Exp 13 Fon =COMexy Accueil	leur s – 1Var phiques ava métrie phi_Deco lorateur trig lor. quadrat ction	, nncés, , , , , , , , , , , , , , , , , , ,	1 Num 2 Mode	ériq > es >	1 ColWi 2 RowH 3 Row 4 Col 5 Cell	dth eight OK	
1 1 2 Tab 3 Stat 5 Gra 6 Gra 7 Géo 9 Gra 10 Exp 11 Exp 12 Exp 13 Fon =COMexy Accueil	leur s – 1Var phiques ava métrie phi_Deco lorateur trig lor. quadrat ction CAS	, ancés, , , , , , , , , , , , , , , , , , ,	1 Num 2 Mode	ériq > es >	1 ColWi 2 RowH 3 Row 4 Col 5 Cell	OK	
1 1 2 Tab 3 Stat 5 Gra 6 Gra 7 Géo 9 Gra 10 Exp 11 Exp 12 Exp 13 Fon =COM Con	leur s – 1Var phiques ava métrie phi_Deco lorateur trig lor. quadrat ction CAS	incés - ,	1 Num 2 Mode	ériq » es »	1 ColWi 2 RowH 3 Row 4 Col 5 Cell	OK 19:4	
1 1 2 Tab 3 Stat 5 Gra 6 Gra 7 Géo 9 Gra 10 Exp 11 Exp 12 Exp 13 Fon =COM Con Accueil Con	leur s – 1Var phiques ava métrie phi_Deco lorateur trig lor. quadrat ction CAS	incés - ,	1 Num 2 Mode	ériq » es »	1 ColWi 2 RowH 3 Row 4 Col 5 Cell	OK 19:4	
1 1 2 Tab 3 Stat 5 Gra 6 Gra 7 Géo 9 Gra 10 Exp 11 1 2 Exp 13 Fon =COM Tab 4 Stat 10 Exp 13 Fon =COM Tab 4 Tab 4 Tab 4 Tab	leur s – 1Var phiques ava métrie phi_Deco lorateur trig lor. quadrat ction CAS	, , , , , , , , , , , , , , , , , , ,	1 Num 2 Mode	ériq » es »	1 ColWi 2 RowH 3 Row 4 Col 5 Cell	OK 19:4 0 0	
1 1 2 Tab 3 Stat 5 Gra 6 Gra 7 Géo 9 Gra 10 Exp 11 Exp 12 Exp 13 Fon =COM 7 Accueil 1 1 1 2 1 3 1	eur leur s - 1Var phiques ava métrie phi_Deco lorateur trig lor. quadrat ction CAS	, , , , , , , , , , , , , , , , , , ,	1 Num 2 Mode	ériq » es » Va D 0 1	1 ColWi 2 RowH 3 Row 4 Col 5 Cell	OK 19:4 0 0 0	
1 1 2 Tab 3 Stat 5 Gra 6 Gra 7 Géo 9 Gra 10 Exp 11 Exp 12 Exp 13 Fon =COM Y Accueil Y 3 1 4 1 2 1 3 1 4 1 5 5	leur s – 1Var phiques ava métrie phi_Deco lorateur trig lor. quadrat ction CAS	App Table 0 1 3 1 1 1 1 1 1 1 1	1 Num 2 Mode	ériq > es >	1 ColWi 2 RowH 3 Row 4 Col 5 Cell	OK 19:4 6 0 0 1 5	
1 1 2 Tab 3 Stat 5 Gra 6 Gra 7 Géo 9 Gra 10 Exp 11 Exp 12 Exp 13 Fon =COM 7 Accueil 7 3 1 4 1 5 1 6 1	leur s - 1Var phiques ava métrie phi_Deco lorateur trig lor. quadrat ction CAS B 1 2 3 4 5 6	App Table 0 1 3 6 10 15 15 10 15 10 15 10 15 10 15 10 15 15	1 Num 2 Mode sur	ériq > es > D 0 0 1 4 10 20	1 ColWi 2 RowH 3 Row 4 Col 5 Cell	OK 19:4 5 15	9 0 °
1 1 2 Tab 3 Stat 5 Gra 6 Gra 7 Géo 9 Gra 10 Exp 11 Exp 12 Exp 13 Fon =COM 7 Accueil 7 3 1 4 1 5 5 6 1 7 1	eur leur s - 1Var phiques ava métrie phi_Deco lorateur trig lor. quadrat ction CAS	App Table C 0 1 3 6 10 15 21	1 Num	ériq > es > D 0 0 1 4 10 20 355	1 ColWi 2 RowH 3 Row 4 Col 5 Cell	OK 1914 5 15 35 20	
1 1 2 Tab 3 Stat 5 Gra 6 Gra 7 Géo 9 Gra 10 Exp 11 Exp 12 Exp 13 Fon =COM 7 Accueil 7 3 1 4 1 5 5 6 1 7 1 8 1 9 1	eur leur s - 1Var phiques ava métrie phi_Deco lorateur trig lor. quadrat ction CAS B 1 2 3 4 5 6 7 7 8 9	App Table C 0 1 3 6 10 15 21 28 36	1 Num	ériq > es > D D 0 0 0 1 4 4 10 200 355 566 844	1 ColWi 2 RowH 3 Row 4 Col 5 Cell	OK 19:4 5 15 35 70 1226	
1 1 2 Tab 3 Stat 5 Gra 6 Gra 7 Géo 9 Gra 10 Exp 11 Exp 12 Exp 13 Fon =COM 7 Accueil 7 3 1 4 1 5 5 6 1 7 1 8 1 9 1 10 1	eur leur s - 1Var phiques ava métrie phi_Deco lorateur trig lor. quadrat ction CAS B 1 2 3 4 5 6 7 7 8 9 9 10	App Table C C C C C C C C C C C C C C C C C C C	1 Num 2 Mode	ériq > es > D D 0 0 0 1 4 4 10 200 355 566 844 120	1 ColWi 2 RowH 3 Row 4 Col 5 Cell	OK 19:4 5 15 35 70 126 210	
1 1 2 Tab 3 Stat 5 Gra 6 Gra 7 Géo 9 Gra 10 Exp 11 Exp 12 Exp 13 Fon =COM 7 Accueil 7 3 1 4 1 5 5 6 1 7 1 8 1 9 1 10 1 10 1 12 2	Arsap leur s - 1Var phiques ava ométrie phi_Deco lorateur trig lor. quadrat ction CAS B 1 2 3 4 5 6 7 7 8 9 9 10 11	App Table C C C C C C C C C C C C C C C C C C C	1 Num 2 Mode	ériq > es > D D 0 0 0 1 4 4 10 200 355 566 844 1200	1 ColWi 2 RowH 3 Row 4 Col 5 Cell 9 Eur	OK 19:4 5 15 35 70 126 210 330	
A T 2 Tab 3 Stat 5 Gra 6 Gra 7 Géo 9 Gra 9 Gra 10 Exp 11 Exp 12 Exp 13 Fon =COM Y Accueil Y 7 1 3 1 4 1 5 5 6 1 7 1 8 1 9 1 10 1 11 1 12 1 3 1 4 1 5 1 6 1 7 1 8 1 9 1 10 1 11 1 12 1 <tr< td=""><td>Arsap leur s - 1Var phiques ava ométrie phi_Deco lorateur trig lor. quadrat ction CAS B 1 2 3 4 5 6 7 7 8 9 9 10 11 12 13</td><td>App Table C C C C C C C C C C C C C C C C C C C</td><td>1 Num</td><td>ériq > es > D D 0 0 0 1 4 4 10 200 355 566 844 1200 2884 2200 2884</td><td>1 ColWi 2 RowH 3 Row 4 Col 5 Cell 9 9 9 9 9 9 9</td><td>OK 19:4 0 0 0 0 0 0 0 0 1 5 15 35 70 126 210 330 495 7715</td><td></td></tr<>	Arsap leur s - 1Var phiques ava ométrie phi_Deco lorateur trig lor. quadrat ction CAS B 1 2 3 4 5 6 7 7 8 9 9 10 11 12 13	App Table C C C C C C C C C C C C C C C C C C C	1 Num	ériq > es > D D 0 0 0 1 4 4 10 200 355 566 844 1200 2884 2200 2884	1 ColWi 2 RowH 3 Row 4 Col 5 Cell 9 9 9 9 9 9 9	OK 19:4 0 0 0 0 0 0 0 0 1 5 15 35 70 126 210 330 495 7715	
1 1 2 Tab 3 Stat 5 Gra 6 Gra 7 Géo 9 Gra 10 Exp 11 Exp 12 Exp 13 Fon =COM 7 Accueil 7 4 1 5 1 6 1 7 1 8 1 9 1 10 1 11 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 1 10 1 11 1 12 1 13 1	Arsap leur s - 1Var phiques ava ométrie phi_Deco lorateur trig lor. quadrat ction CAS B 1 2 3 4 5 6 7 7 8 9 9 10 11 12 13 4	App Table C C C C C C C C C C C C C C C C C C C	1 Num 2 Mode	ériq > es > D D 0 0 0 1 4 4 10 200 355 566 844 1200 1655 2200	1 ColWi 2 RowH 3 Row 4 Col 5 Cell 5 Cell	OK 19:4 0 0 0 0 0 0 1 5 15 35 70 126 210 330 495 210 330	

Exemple II : La suite de Fibonacci

Une autre variable importante du Tableur est la variable Cell().

- 1. Taper en tête de la Colonne A pour la sélectionner.
- Taper Shiff + i pour commencer une nouvelle formule pour toute la colonne. Entrer Cell(Row-2,1)+Cell(Row-1,1).
- 3. Taper ^{CK} et la Colonne A se remplit de 0.
- 4. Maintenant entrer 1 dans la cellule A1 pour que la suite de Fibonacci dans la Colonne A.

Vous vous êtes familiarisés maintenant avec les variables du Tableur, Cell, Col, et Row!

Exemple III : La Formule du Binôme

Ici nous utilisons le CAS de la HP Prime pour obtenir des résultats « symboliques ».

Dans l'exemple ci-contre on utilise le CAS pour définir une colonne du Tableur pour développer les diverses puissances du binôme x+1. On remarque en bas de l'écran, dans le menu contextuel l'option (AS) qu'on doit activer, si nécessaire (un point apparaît à droite (AS)). Quand il est activé le CAS est utilisé pour évaluer la formule « littérale ». Sinon le Tableur utilise la dernière valeur de x pour donner des résultats « numériques ».

De nombreuses possibilités s'offrent alors !

	CAS	5	preadshe	et	13:09
(II)	A	В	C	D	É
1	1		1		
2					
3					
4					
5					
6	-				
7					
8					
9			-		
10			-	~	1
=C	ell	<i>i</i> -2,1 / +Cel	[Row-1,1		
N	aine	CAS	\$	Cance	el OK

(CAS	Spre	adsheet		13:11
hp	A	В	С	D	E
1	1				
2	1				
3	2				
4	3				
5	5				
6	8				
7	13				
8	21				
9	34				
10	55				
_					

GO

Show

Format Go To Select

13:4 Spreadsheet CAS ØΑ x+1 2 2 x +2*x+1 3 2 Э +3*x +3*x+1 2 4 3 +4*x +6*x +4*x+1 Row expand x+1 Cancel OK CAS.

L'Applet Suite

L'applet Suite vous offre les outils dont vous avez besoin pour l'étude des suites numériques et notamment les représentations graphiques des suites récurrentes, la liste des termes de chaque suite, chaque terme d'une suite récurrente étant accessible immédiatement en vue "Num".

- Taper Apps info
 et choisir l'icône Suite. L'Applet s'ouvre en vue "Symb".
- 2. Entrer -2 pour U1(1) et $\frac{-1}{2} * U1(N-1) + \frac{3}{2}$ pour U1(N).
- 3. Cocher pour activer le traçage et choisir la couleur de la représentation graphique.
- Enfin taper Shift + Coté pour configurer la représentation graphique. Pour une suite récurrente il est usuel de choisir le tracé en toile d'araignée. Ici on décide d'afficher les douze premiers termes.
- 5. Taper Plot pour représenter la suite.

Dans la « vue Plot », taper Menu pour ouvrir la barre de menu en bas de l'écran :

- **Zoom** : ouvrer le menu Zoom
- Trace : activer ou désactiver le pointeur
- **Go To** : entrer un valeur de *N* et le pointeur sautera au terme correspondant de la suite
- **Defn** : afficher l'expression de la suite
- Menu : ouvrer et fermer la barre de menu

Ce que vous pouvez faire :

- Tapez (•) ou (•) pour vous déplacer sur la courbe de terme en terme.
- Tapez
 ou
 ou
 pour sauter d'une suite à l'autre en cours de traçage
- Touchez et déplacez la fenêtre graphique comme vous voulez.
- Tapez _____ ou ____ pour faire un zoom avant ou un zoom arrière autour du curseur

Menu

Si on préfère une représentation graphique en escalier :

- 1. Taper Shift + PlotE pour configurer l'écran graphique et modifier la fenêtre en *x* et *y*. Ici on choisit les termes d'indices 1 à 12. On choisit les intervalles d'affichage en abscisse et en ordonnée.
- 2. Taper Plot pour représenter la suite.

Dans la vue "Num", on peut afficher les termes de la suite et aller immédiatement à la valeur souhaitée de N pour obtenir le terme d'indice correspondant de la suite.

- 3. Taper **Defin** pour afficher en bas de la colonne *U*1 l'expression de la suite *U*1.
- 4. Pour déplacer le tableau des termes à un indice souhaité, taper directement la valeur de *N* dans la première colonne.
- 5. Avec <u>Size</u> on choisit la taille de la police.

N	U1	
25	.999999821185	- 12
26	1.0000008941	
27	.999999955295	
28	1.0000002235	
29	.999999988825	
30	1.0000000559	
21	1 000000014	
32	000000000	
34	1 0000000035	
35	9999999999825	
36	1,00000000009	
37	.9999999999955	
38	1.0000000002	
39	.999999999999	
40	1	
25		
Zoom	s	ize Defn Column
		a contraction of the second se

Se	quence Plot Setup	23:38
Seq Plot: Stairste	р	
N Rng: 1	12	
X Rng:7	12	
Y Rng: -2.5	2.95	
X Tick: 1		
Y Tick: 1		
		<u></u>
		<u></u>
		-11

U1(1,2,N):-2,, (-1/2)*U1(N-1)+3/2

-2	
2.5	
.25	
1.375	
.8125	
1.09375	
.953125	
1.0234375	
.98828125	
1.005859375	
.9970703125	
	2 2.5 .25 1.375 .8125 1.09375 .953125 1.0234375 .98828125 1.005859375 .9970703125

On peut aussi définir des suites récurrentes d'ordre deux, comme celle de Fibonacci, déjà vue.

- 1. Taper Symber pour revenir à la vue "Symb".
- 2. Entrer -1 pour U2(1), puis 1 pour U2(2) et $U2(N-1) - \frac{1}{2} * U2(N-2)$ pour U2(N).
- 3. Cocher pour activer le traçage et choisir la couleur de la représentation graphique.
- 4. Taper $\frac{\text{Shift}}{\text{Listupe}} + \frac{\text{Plot}}{\text{Listupe}}$ et configurer le graphe
- 5. Enfin taper Port pour la représentation graphique de la suite.
- Taper voir les termes de la suite.
 Taper pour afficher l'expression de la suite et taper size pour choisir ¹Small Font.
- 7. Taper 30 pour sauter au terme U2(30).

Dans la vue "Num", on a accès directement aux termes de la suite représentés ci-contre par des points de la droite d'équation y = x. On peut alors conjecturer que cette suite, non monotone, converge vers 0, ce qu'on confirme par le CAS.

Le langage de programmation puissant de la HP Prime permettra, comme on le verra plus loin, de rédiger un algorithme pour voir que cette conjecture est sans doute vraie.

Là encore les nombreuses fonctionnalités de la HP Prime permettent de donner plusieurs représentations mathématiques d'une même situation. Ces différentes « vues » qui sont autant d'outils mathématiques interactifs, aident à la compréhension par l'élève de la notion de suite récurrente.

Sequence Symbolic View	09:35
U2(1)= ⁻¹	
U2(2)= ¹	
$\sqrt{U2(N)} = U2(N-1) - \frac{1}{2} * U2(N-2)$	
U3(1)=	
U3(2)=	

N	U2	1		
1	-1			
3	1.5			
5	.25			
7	-375			
8	.0625			
10	.0625			
12	.0625			
14	015625			
16	015625			
U2(N-1)-	(1/2)*U2(N-2)		-	-
Zoom		Size	Defn•	Column

- 8. Taper CAS pour accéder à l'écran "CAS".
- 9. Utiliser la fonction rsolve du CAS ainsi, en tapant la formule à droite pour étudier la suite récurrente d'ordre 2 précédente.
- 10. Le CAS donne aussitôt l'expression du terme général de la suite.
- 11. Utiliser factor(simplify(sincos()) du CAS pour obtenir la forme trigonométrique.
- 12. Taper Symbol pour revenir à l'Applet Suite.
- 13. Entrer l'expression obtenue en CAS pour U3(N). Cf ci-contre à droite.
- 14. Taper Pour représenter cette suite. On constate que ses termes sont les mêmes que ceux de la suite U2(N).
- Taper Menne . Comme on le voit en bas à droite l'écart des termes est négligeable.
- 16. Taper CAS pour revenir à l'écran "CAS".
- 17. Etudions alors la limite de la suite U3 en tapant
 imité pour accéder à la limite en 2D puis n puis
 Shiff + imité son pour l'infini puis, en remontant dans l'historique on copie l'expression du terme général.
- 18. On vérifie ainsi que la limite est bien nulle.

Nous verrons plus loin, en programmation, un algorithme pour le vérifier.

L'Applet Statistiques à Une Variable

L'applet Stats_1Var vous donne tous les outils dont vous avez besoin pour l'étude des séries à un caractère (calculs de moyenne, écart-type, médiane, etc. et histogramme, « boîte à moustache »).

- Taper Apps Info L'Applet s'ouvre en vue "Num".
- 2. Entrer les notes en D1 avec leurs effectifs en D2.
- Taper pour configurer la représentation.
 Choisir la colonne des effectifs D2. Taper Choix et choisir le type de Tracé (ici Histogramme).
- 4. Taper Shift + Plot pour configurer la fenêtre de tracé. Intervalles pour les données et les effectifs.
- 5. Enfin taper Plot pour tracer l'histogramme.
- 6. Taper view puis stats afficher le tableau des résultats de la statistique.

	Stats	17:05
Х	H1	
n	70	
Min	2	
Q1	9	
Med	11	
Q3	13	
Max	19	
ΣΧ	779	
ΣX ²	9429	
X	11.1285714286	
sX	3.31846580831	
σΧ	3.29467721624	
serrX	.396632527319	
Ecart-typ	pe échantillon X	
	Taille	Colonn OK

On remarque la présence de l'écart-type σX de la population et celui sX de l'échantillon.

Pour représenter graphiquement les indicateurs de dispersion on utilise un autre diagramme.

- Taper pour reconfigurer la représentation.
 Taper Choix pour choisir un nouveau type de Tracé (ici Boîte à Moustache).
- 8. Taper Shift + Plot pour reconfigurer la fenêtre de tracé, notamment l'amplitude des ordonnées.
- 9. Enfin taper Plot pour tracer le diagramme.
- 10. Avec les flèches () ou () on peut visualiser les quartiles et la médiane de la distribution.

L'Applet Statistiques à Deux Variables

L'applet Explorateur Stats_2Var donne tous les outils dont vous avez besoin pour étudier la corrélation entre deux données statistiques et chercher un ajustement adéquat pour le « nuage des données ».

- Taper Apps Info L'Applet s'ouvre en vue "Num".
- 2. Entrer les données à corréler en D1 et en D2.
- 3. Taper we puis **Choix** pour configurer l'Ajustement et Sélectionner Linéaire, pour une régression linéaire.
- 4. Taper Shift + Plot pour configurer la fenêtre de tracé.
- 5. Enfin taper Plot pour tracer la courbe d'ajustement.
- 6. Taper your voir la formule d'ajustement.
- 7. Taper Nume et Stats pour les résultats des calculs.

Statist	ics 2Var S	ymboli	c View	12:53			St	ats		13152
1 51.01		C2		1	X	-	S1			_
· 51. 41				_	n	7	5964472	1		
Type1: Linear				1	R ²	.45058	38167455			
-8 09018	567630×¥4	22 971	9590754		SCOV	61				
Fill. Cost is	201022 11	22.371	5556751		JOCOV	5228	5714285	7		
S2:					2/1	105.14	t			
Type2: Linear					-	-				
Fit2: M*X+B						- 2				
53:						_				
Enter function					Coefficier	nt de déte	rmination	1.0		
Edit 🗸	X	Fit•	Show	Eval	Stats•	Х	Y	Taille	Colonn	OK

Mis peut-être cet ajustement n'est-il pas satisfaisant. Il est alors possible d'essayer un ajustement d'un autre type parmi les nombreux proposés (cf figure ci-contre).

- 8. Taper puis **Choix** pour configurer l'Ajustement et Sélectionner, par exemple, Exponentiel.
- 9. Taper Plot pour tracer la courbe d'ajustement.
- 10. Taper Symbol pour voir la formule d'ajustement.
- 11. Taper \Pr_{Ssupp} et se placer sur la courbe avec \bigcirc ou \bigcirc .
- 12. Taper Menu + Aller pour obtenir une estimation de Y. Enter par exemple X = 2.4 puis K et Menu .

	State	s – 2Var	Vue	numérique	12:30
1 1 45	C1	C2		C3	C4.
2 1.5		10			
3 1.7		8			
5 1.86		9			
7 2.21		6			
8	_				
10					
12					
13					
1.45 Edit	ins	Trie	r]T	aille 🛛 Exe	c Stats
	Stats	s – 2Var	Vue s	symbolique	12:40
√ S1: C	√ Linéair	e			
Type 1	Logarit	hmique			
Aius	Expone	entiel			
- rijus	Puissar	nce			
52:	Exposa	int			
Type 2	Inverse	2			
Ajus	Ouadr	que			
S3:	Quadra	auque			
Choisir	cube	-			
Edit	√		A	just• Affi	ch Eval
Ŧ	1				
+					
1 +		1			
1		1			
		/			
				· •	
				÷	
				+	
S1:3 X:1.	7		Y:5	+	Menu
51:3 X:1.	7		Y:5	*	Menu
51:3 X:1.	7		Υ:5	+	Menu
51:3 X:1.	7		Y:5	+	Menu
51:3 X:1.	7		Y:5	*	Menu
S1:3 X:1.	7		Y:5	*	Menu
51:3 X:1.	7		Y:5	+	Menu
51:3 X:1.	7		Y:5	· · · · · · · · · · · · · · · · · · ·	Menu
51:3 X:1.	7		Y:5	*	Menu
51:3 X:1.	7		Y:5	*	Menu
S1:3 X:1.	7		Y:5	· · · · · · · · · · · · · · · · · · ·	Menu

Probabilités à densité

Une variable X suit une loi de probabilité à densité f et on veut calculer les probabilités $P(X \le b)$, $P(a \le X \le b)$ ou $P(X \ge b)$. On sait alors que $P(a \le X \le b) = \int_a^b f(t)dt$. Ici X suit la loi $\mathcal{N}(0,1)$.

- 1. Taper sing pour aller dans l'écran d'Accueil.
- 2. Taper pour chercher dans les menus la fonction correspondante.
- 3. Taper Math puis ⁵Probability, ⁶Cumulative et enfin ¹Nomal puis OK.
- 4. Taper 2 d'où NORMAL_CDF(2) ou $P(X \le 2)$. On obtient 0.97725 à 10⁻⁵ près.
- Pour calculer P(-1.5 ≤ X ≤ 1), on saisit alors, comme précédemment à travers les menus, ou en utilisant copy en bas d'écran NORMAL_CDF(1)- NORMAL_CDF(-1.5).
- 6. On peut vérifier grâce à l'intégration de la densité la définition de $P(-1.5 \le X \le 1)$.

Pour une étude graphique de cette intégration, utiliser l'Applet Fonction (cf plus haut).

- Taper Apps puis aller dans l'Applet Fonction. L'Applet s'ouvre en vue "Symb".
- Taper F1(X) = NORMALD(X), en utilisant les menus
 ⁵Probability, ⁶Density et ¹Nomal.
- 9. Shiff Plot pour configurer la fenêtre de tracé. On choisit alors les valeurs ci-dessous

- 10. Porte pour tracer le graphe de la densité.
- 11. Eco , en bas d'écran, et ⁴Signed Area puis on touche l'écran en x = -1.5 et en x = 1 et on obtient en bas de l'écran la valeur $P(-1.5 \le X \le 1) \approx 0.7745375$.

Loi Binomiale approchée par une loi Normale

X suit une loi binomiale $\mathcal{B}(n,p)$ et on suppose $n \ll assez \text{ grand} \gg \text{et } p \ll \text{pas trop proche de 0 ou de 1} \gg$. On approche alors *X* par un variable aléatoire *Y* de loi $\mathcal{N}\left(np, \sqrt{(np(1-p))}\right)$. Ici n = 30 et $p = \frac{2}{3}$.

- 1. Taper Symbo pour aller dans la vue "Symb".
- 2. Taper pour chercher dans les menus la fonction correspondante.
- Taper Math puis ⁵Probability, ⁵Density et enfin ⁵Binomial puis ^{CK}. (cf page précédente).
- Pour obtenir un histogramme dont les paliers sont centrés sur les valeurs entières de *X*, on arrondit *X* à l'entier le plus proche à l'aide de la partie entière de X+0.5,
- On saisit donc l'expression suivante pour F2(X) BINOMIAL(30,IP(X+.5),2/3) puis
- 6. Shift Plot pour configurer la fenêtre de tracé. On choisit alors les valeurs ci-dessous

Funct	Proba Plot Setup 09141	Funct_Pr	oba Plot Setup	18+57
		Axes; √	Labels:	
		Grid Dots: √	Grid Lines: √	
X Rng:8	31	Cursor: Standar	d	1
Y Rng:0225	.25	Method: Adapt	ive	
X Tick: 1		√ Fixed-	Step Segments	
Y Tick: .1		Fixed	Step Dots	
nter minimum h	orizontal value			
Edit	Page 1/2 T		Page 3/.	

dont le mode de tracé « connecté », en Page 2/2.

- 7. Plot pour tracer l'histogramme de X.
- 8. Représentons maintenant la densité de *Y* qui suit la loi normale.
- 9. Taper Symber pour aller dans la vue "Symb".
- 10. Taper for pour chercher dans les menus la fonction correspondante.
- Taper Math puis ⁵Probabilité, ⁵Densité et enfin
 ¹Nomale puis CK.
- 12. Entrer alors les paramètres

$$\operatorname{es}\left(np,\sqrt{\left(np(1-p)\right)}\right)\operatorname{de}$$

la loi normale que suit la variable *Y* à savoir ici F3(X)=NORMALD $\left(20, \sqrt{\frac{20}{3}}, X\right)$ puis \bigcirc K.

13. Plot pour tracer le graphe de la densité de *Y*.

On remarque alors que Y qui suit la loi normale approche bien X qui suit la loi binomiale.

Algèbre Linéaire

On considère maintenant une application linéaire f_5 de \mathbb{R}^5 dans \mathbb{R}^4 dont on notera la matrice mat5 dans les bases habituelles. On se propose d'étudier le noyau et l'image de cette application linéaire.

- 1. Taper CAS pour aller dans l'écran CAS.
- 2. Taper $\texttt{Shift} + \texttt{(1)} \texttt{*}_{\texttt{R}}$ pour créer la matrice mat5 de l'application linéaire f_5 .
- Taper ker(mat5) pour obtenir une base du noyau de *f*₅.
 On peut obtenir ker par et cauge. Avec (Vars) et
 CASS puis ¹All on peut sélectionner mat5.
- On obtient une base de ce noyau dans ℝ⁵ dont on vérifie qu'il est bien au moins de dimension 1.
- 5. Vérifier-le en résolvant un système linéaire (on appelle *x*, *y*, *z*, *t* et *u* les coordonnées dans \mathbb{R}^5).
- 6. Utiliser la commande solve qui résout aussi les équations matricielles, en précisant les inconnues.
- 7. Taper la ligne de commande ci-contre.
- 8. On obtient une représentation paramétrique du noyau de f_5 qui est bien de dimension 2.
- 9. Taper rank(mat5) pour obtenir le rang de f_5 . On vérifie que dim (\mathbb{R}^5) – dim $(Ker(f_5)) = 3$.

On peut même obtenir une base de l'image de f_5 . La commande basis du CAS permet d'extraire une base d'une famille de vecteurs-lignes. On sait que $Im(f_5)$ est engendrée par les vecteurs-colonnes de mat5. Si on transpose mat5 il suffit alors de chercher une base de la famille engendrée par les vecteurs-lignes de la nouvelle matrice transpose(mat5).

- 10. Taper directement la ligne de commande basis(transpose(mat5)) ou, par et catter, trouver les commandes basis et transpose.
- 11. Pour retrouver des vecteurs-colonnes il suffit à nouveau de transposer la matrice obtenue.
- 12. Finalement on peut entrer directement la ligne de commande transpose(basis(transpose(mat5))).
- 13. Noter que le premier des vecteurs de base proposé pour $Im(f_5)$ est le premier vecteur-colonne de mat5. En fait les trois premiers vecteurs-colonnes de mat5 forment aussi une base de $Im(f_5)$.

Calcul Matriciel Formel

Découvrons ici la puissance du Calcul Formel de la HP Prime (avec les fonctions déjà rencontrées en XCAS) dans le domaine de l'Algèbre Linéaire.

- 1. Taper **CAS** pour aller dans l'écran CAS.
- 2. Taper $\texttt{Shift} + \texttt{(1,8)}_{R}$ pour créer la matrice mat_st stochastique (cf ci-contre), représentant le passage du système de l'état *n* à l'état *n*+1.
- 3. Il s'agit d'étudier la limite de la suite des puissances de cette matrice stochastique.
- Bien sûr on peut calculer exactement mat_st² ou mat_st⁵ en mode CAS (cf ci-contre).
- Pour le calcul de mat_stⁿ la HP Prime nous suggère la fonction matpow dans and calgar.
- 6. Taper matpow(mat_st,n) puis simplif pour obtenir le résultat ci-contre.
- 7. Taper $\lim_{n \to +\infty} puis \lim_{n \to +\infty} (matpow(mat_st, n))$ pour obtenir la matrice de l'état « stable »

Pour vérifier ce résultat on peut utiliser les valeurs

propres de mat_st et sa réduite de Jordan.

- 8. Taper eigenvals(mat_st) pour obtenir les valeurs propres de la matrice mat_st. Les valeurs propres sont inférieures ou égales à 1 en valeur absolue.
- 9. Taper jordan(mat_st) pour obtenir la matrice de passage suivie de la réduite de Jordan de mat_st.

Le mode CAS permet de généraliser en considérant une matrice stochastique avec deux paramètres a et b positifs tels que a + 2b = 1.

CAS	Stats - 1V	ar	18:28
$\begin{bmatrix} 1 & 2 & 2 \\ 5 & 5 & 5 \end{bmatrix}$			$\begin{bmatrix} 1 & 2 & 2 \\ \hline 5 & 5 & 5 \end{bmatrix}$
$mat_{st} = \frac{2}{5} \frac{1}{5} \frac{2}{5}$			$\frac{2}{5} \frac{1}{5} \frac{2}{5}$
$\frac{2}{5} \frac{2}{5} \frac{1}{5}$			$\frac{2}{5} \frac{2}{5} \frac{1}{5}$
mat_st ²			$\frac{9}{25} \frac{8}{25} \frac{8}{25}$
			$\frac{8}{25} \frac{9}{25} \frac{8}{25}$
			$\frac{8}{25} \frac{8}{25} \frac{9}{25}$
Sto ► simplif		Copie	Affich
CAS	Stats – 1V	ar "1011 1	18:32 47
mat_st ⁵		$\frac{1041}{3125}$ $\frac{1}{3}$	$\frac{042}{125}$ $\frac{1042}{3125}$
		$\frac{1042}{3125}\frac{1}{3}$	041 1042 125 3125
		1042 1 3125 3	042 1041 125 3125
matpow(mat_st,n)	, , ,n	n	ⁿ]
	$2*\left(\frac{-1}{5}\right)$ +1	$-\left(\frac{-1}{5}\right) +1$	$\left(\frac{-1}{5}\right) +1$
· · · · · ·	3 /-1.) ⁿ	3 /_1.1 ⁿ	3 /_1\ ⁿ
Sto 🛌 simplif		. ب. ا. است. المحکم (
coc	Stats - 1V	ar	18:33
	$-\left(\frac{-1}{5}\right) +1$	$2*\left(\frac{-1}{5}\right) +1$	$-\left(\frac{-1}{5}\right) +1$
	3 /-1) ⁿ	3 /-1\ ⁿ	3 /-1\ ⁿ
	$\frac{1}{5}$ +1	$\frac{-(-1)}{3}$ +1 2	2*(5)+1
$\lim_{n \to \infty} (matpow(mat))$	_st,n)]	3	$\begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 2 \end{bmatrix}$
			$\frac{1}{2}$
			111
Sto ► simplif			
CBS	Stats - 1V	ar	18:40
n⇒∞ n→∞			333
			$\frac{1}{3}\frac{1}{3}\frac{1}{3}$
			$\begin{bmatrix} 1 & 1 & 1 \\ \hline 3 & \overline{3} & \overline{3} \end{bmatrix}$
eigenvals(mat_st)			$\left[1 \frac{-1}{5} \frac{-1}{5}\right]$
jordan(mat_st)		[1 2 -1]	1 0 0 $0^{-1} 0$
		1 0 2 1 -2 -1	5
			0 0 5
Sto ► simplif			

Calcul Matriciel (Réduction)

On considère maintenant les applications linéaires f_6 et f_7 de matrices M6 et M7 dans les bases usuelles de \mathbb{R}^4 et de \mathbb{R}^3 respectivement. On se propose d'essayer de diagonaliser ou de « réduire » ces matrices.

- 1. Taper $\text{Shift} + \frac{4}{\text{Metric}}$ puis Edit pour saisir M7.
- 2. Taper $\underset{B}{\blacksquare}$ et $\underset{Catlg}{Catlg}$ puis sélectionner eigenvals pour obtenir les valeurs propres de f_7 .
- Taper et use puis sélectionner eigenvects pour obtenir les vecteurs propres correspondants sous la forme d'une matrice de passage mat_p.
- 4. Taper mat_p*M7*mat_p⁻¹ pour obtenir la matrice équivalente à M7.
- 5. Taper factor(poly2symb(pmin(M7))) pour obtenir une factorisation du polynôme minimal de M7.
- 6. Taper (M7+2*indentity(3))*(M7-4*indentity(3)) pour vérifier que M7 annule son polynôme minimal.
- 7. Taper Shift + Matrix puis Edit pour saisir M6.
- 8. eigenvals(M6) donne les valeurs propres mais il n'existe pas de base de vecteurs propres de \mathbb{R}^4 .
- 9. La matrice M6 n'est donc pas diagonalisable
- Vérifier que son polynôme minimal n'est pas scindé à racines réelles simples. Et d'ailleurs (M6-indentity(4))*(M6-2*indentity(4))* (M6-2*indentity(4)) n'est pas la matrice nulle.

Pour calculer, par exemple, les puissances de la matrice carrée M6 on utilise alors une réduite de Jordan de cette matrice.

- Taper jordan(M6) pour obtenir la réduite de Jordan de M6 précédée de sa matrice de passage mat_p.
- 12. Taper mat_p*M6*mat_p⁻¹ pour vérifier que l'on obtient la réduite de Jordan équivalente à M6.

ics 1Var	22:50
6 11 1 1 0 0 -1 -1 -6 -5 0 0 6 5 1 0	4100 0400 0020 0001
6 0 -0	11 1 1 0 -1 -1 5 -5 0 0 5 1 0
	4 1 0 0 0 4 0 0 0 0 2 0
	ics 1Var [[6 11 1 1 1] 0 0 -1 -1 -6 -5 0 0 6 5 1 0 [6 0 -6 6 6

CAS	Statistics 1Va	ar	22:35
M7			[133]
			313
eigenvals(M7)			[0 0 -2]
factor DET M7-yair	lentity(3))		14 -2 -2
mat n=eigenvests	47)	-	[x+2] *[x−4]
mar_p.=eigenvecis(i	wi7]		102
			0 -2 -2
mat_p ⁻¹ *M7*mat_p	0		400
			0 0 -2
Sto + simplif			
	Statistics 11/2		22:40
CAS factor DET MZ-weig	Statistics IV		2
Tactor(DEI(M/-X+IC	ienary(3)))	7	(x+2) *(x-4)
mat_p:=eigenvects(N	M7j		1 2 0
			0 -2 -2
mat p ⁻¹ *M7*mat r	5		400
			0 -2 0
factor poly2symb(p	min(M7)))		(x+2)*(x-4)
(M7+2*identity(3))	*(M7-4*identit	v(3))	[0 0 0]
			000
			[[0 0 0]
Sto ► simplif			
			221 44
CAS	Statistics 1Va	ar	22.40
CAS (WP+2+WENNY(>))	Statistics 1Va	ar y(-y)	0 0 0
CAS (WAA2+IDENILLY(2))	Statistics 1Va •(W/ 4•10entry	ar Y(=)] T	
CAS (WY - 2 - Identity(2)) M6	Statistics 1Va	ar Non	0 0 0 0 0 0 5 4 2 1 0 1 -1 -1
ر M2+Identity(ک)) M6	Statistics 1Va	ar y(=))	0 0 0 0 0 0 5 4 2 1 0 1 -1 -1 -1 -1 3 0
(WP+2+Identity(J)) M6	Statistics 1Va	ar y(=))	0 0 0 0 0 0 5 4 2 1 0 1 -1 -1 -1 -1 3 0 1 1 -1 2
(W ^{A1} 2+Identity(J)) M6 eigenvals(M6)	Statistics 1Va		22.43 0 0 0 0 0 0 5 4 2 1 0 1 -1 -1 -1 -1 3 0 1 1 -1 2 [4 4 2 1]
(W ^{PP2+Identity(D))} M6 eigenvals(M6) factor(DET(M6-x*ic	Statistics 1Va	(x-1)*	22140 0 0 0 0 0 0 5 4 2 1 0 1 -1 -1 -1 -1 3 0 1 1 -1 2 [4 4 2 1 (x-2)*(x-4) ²
eigenvals(M6) factor(DET(M6-x+ic eigenvects(M6)	Statistics 1Va (INC 4+)dentity dentity(4)])	ar y(-7)) (x-1)*(0 0 0 0 0 0 5 4 2 1 0 1 -1 -1 -1 -1 3 0 1 1 -1 2 [4 4 2 1 (x-2)*(x-4) ²
(W ^{CHS} =Hendly(D)) M6 eigenvals(M6) factor(DET(M6-x*ic eigenvects(M6) factor(poly2symb(p	Statistics 1Va (INI 4 fidentity Jentity(4)])	(x-1)*((x-1)*(22.13 0 0 0 0 0 0 5 4 2 1 0 1 -1 -1 -1 -1 3 0 1 1 -1 2 [4 4 2 1] (x-2)*(x-4) ² [1] (x-2)*(x-4) ²
(W ^{CHS} M6 eigenvals(M6) factor(DET(M6-x*ic eigenvects(M6) factor(poly2symb(p Sto ► simplif	Statistics 1Va (M/ 4+identity lentity(4)]) min(M6)])	ar y(-7)) (x-1)*((x-1)*($\begin{array}{c} 22140\\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 5 & 4 & 2 & 1 \\ 0 & 1 & -1 & -1 \\ -1 & -1 & 3 & 0 \\ 1 & 1 & -1 & 2 \\ 1 & 1 & -1 & 2 \\ 1 & 4 & 4 & 2 & 1 \\ 1 & 4 & 4 & 2 & 1 \\ (x-2)*(x-4)^2 \\ \hline \\ (x-2)*(x-4)^2 \end{array}$
CGS (W ^{CGS} -Huenday(S)) M6 eigenvals(M6) factor(DET(M6-x+ic eigenvects(M6) factor(poly2symb(p Sto ► simplif	Statistics 1Va (W/ 4-identity lentity(4))) min(M6))) Statistics 1Va	ar y(-)) (x-1)*((x-1)*($\begin{array}{c} 22139\\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 \\ 5 & 4 & 2 & 1 \\ 0 & 1 & -1 & -1 \\ -1 & -1 & 3 & 0 \\ 1 & 1 & -1 & 2 \\ 1 & 1 & -1 & 2 \\ 1 & 4 & 2 & 1 \\ (x-2)*(x-4)^2 \\ \end{array}$
(W ^{PI2} +Identity(⊃)) M6 eigenvals(M6) factor(DET(M6-x+ic eigenvects(M6) factor(poly2symb(p Sto ► simplif	Statistics 1Va (INV 4+Identity Jentity(4)]) min(M6)]) Statistics 1Va	ar y(->)) (x-1)*((x-1)*(ar	$\begin{array}{c} 22139\\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 \\ 5 & 4 & 2 & 1 \\ 0 & 1 & -1 & -1 \\ -1 & -1 & 3 & 0 \\ 1 & 1 & -1 & 2 \\ & & & & & \\ 1 & 1 & -1 & 2 \\ & & & & & \\ (x-2)*(x-4)^2 \\ & & & & & \\ (x-2)*(x-4)^2 \\ & & & & \\ (x-2)*(x-4)^2 \\ & & & & \\ (x-2)*(x-4)^2 \\ & $
(W ^{PP2+Identity(→))} M6 eigenvals(M6) factor(DET(M6-x+ic eigenvects(M6) factor(poly2symb(p Sto > simplif CHS eigenvals(M6)	Statistics 1Va (M/ 4+identity (4))) (M6))) Statistics 1Va	ar y(-7)) (x-1)*((x-1)*((x-1)*(ar	$\begin{array}{c} 22:42\\ 0 & 0 & 0\\ 0 & 0 & 0\\ 0 & 0 & 0\\ 0 & 0 &$
(W ^{CRS} eigenvals(M6) factor(DET(M6-x+ic eigenvects(M6) factor(poly2symb(p Sto ► simplif CRS eigenvals(M6) factor(DET(M6-x+ic	Statistics 1Va (W/ 4+identity lentity(4)]) min(M6)]) Statistics 1Va lentity(4)])	ar y(-7) (x-1)*((x-1)*(ar (x-1)*($\begin{array}{c} 22132\\ 0 & 0 & 0\\ 0 & 0 & 0\\ 0 & 0 & 0\\ 0 & 0 &$
CRS eigenvals(M6) factor(DET(M6−x+ic eigenvects(M6) factor(poly2symb(p Sto > simplif) CRS eigenvals(M6) factor(DET(M6−x+ic eigenvects(M6)	Statistics 1Va (W/ 4+identity lentity(4))) statistics 1Va Jentity(4)))	ar y()) (x-1)*((x-1)*(ar (x-1)*($\begin{array}{c} 22139\\ 0 & 0 & 0\\ 0 & 0 & 0\\ 0 & 0 & 0\\ 0 & 0 &$
CAS eigenvals(M6) factor(DET(M6−x+ic eigenvects(M6) factor(poly2symb(p Sto > simplif) CAS eigenvals(M6) factor(DET(M6−x+ic eigenvects(M6) factor(poly2symb(p	Statistics 1Va (W/ 44))) min(M6))) Statistics 1Va lentity(4))) min(M6)))	ar y()) (x-1)*((x-1)*((x-1)*((x-1)*((x-1)*((x-1)*($\begin{array}{c} 22139\\ 0 & 0 & 0\\ 0 & 0 & 0\\ 0 & 0 & 0\\ 0 & 0 &$
(W ^{CHS} 2+Identity(⊃)) M6 eigenvals(M6) factor(DET(M6-x+ic eigenvects(M6) factor(poly2symb(p Sto > simplif) CHS eigenvals(M6) factor(DET(M6-x+ic eigenvects(M6) factor(poly2symb(p (M6-identity(4)))*(†	Statistics 1Va (W/ 4+identity dentity(4))) min(M6))) Statistics 1Va dentity(4))) min(M6))) W6-2*identity(4)	ar y()) (x-1)*($\begin{array}{c} 22139\\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 1 & -1 & -1 \\ (x-2)*(x-4)^2 \\ \hline \\ (x-2)*(x-4$
(W ^{CAS} eigenvals(M6) factor(DET(M6-x+ic eigenvects(M6) factor(poly2symb(p Sto ► simplif CAS eigenvals(M6) factor(DET(M6-x+ic eigenvects(M6) factor(poly2symb(p (M6-identity(4))+(N	Statistics 1Va (M7 4+identity lentity(4)]) min(M6)]) Statistics 1Va lentity(4)]) min(M6)]) M6-2*identity(4)	ar y(->)) (x-1)*($\begin{array}{c} 22132\\ 0 & 0 & 0\\ 0 & 0 & 0\\ 0 & 0 & 0\\ 0 & 0 &$
CRS eigenvals(M6) factor(DET(M6-x*ic eigenvects(M6) factor(poly2symb(p Sto ► simplif CAS eigenvals(M6) factor(DET(M6-x*ic eigenvects(M6) factor(DET(M6-x*ic eigenvals(M6) factor(DET(M6-x*ic eigenvects(M6) factor(poly2symb(p (M6-identity(4))*(f)	Statistics 1Va (W/ 4+identity lentity(4))) statistics 1Va lentity(4))) lentity(4))) min(M6))) M6-2*identity(4)	ar y(->)) (x-1)*($\begin{array}{c} 22132\\ 0 & 0 & 0\\ 0 & 0 & 0\\ 0 & 0 & 0\\ 0 & 0 &$
CAS eigenvals(M6) factor(DET(M6-x+ic eigenvects(M6) factor(poly2symb(p CAS eigenvals(M6) factor(DET(M6-x+ic eigenvects(M6) factor(poly2symb(p (M6-identity(4))*(M	Statistics 1Va (W/ 4+identity lentity(4))) statistics 1Va lentity(4))) umin(M6))) M6-2*identity(4)	ar y()) (x-1)*($\begin{array}{c} 22132\\ 0 & 0 & 0\\ 0 & 0 & 0\\ 0 & 0 & 0\\ 0 & 0 &$
CAS (W) ¹² +Identity(⊃)) ¹ M6 eigenvals(M6) factor(DET(M6-x*ic eigenvects(M6) factor(DET(M6-x*ic eigenvals(M6) factor(DET(M6-x*ic eigenvals(M6) factor(DET(M6-x*ic eigenvals(M6) factor(DET(M6-x*ic eigenvects(M6) factor(poly2symb(p (M6-identity(4))*(!)	Statistics 1Va (W/ 4+identity dentity(4))) min(M6))) Statistics 1Va lentity(4))) min(M6))) M6-2*identity(4	ar y()) (x-1)*($\begin{array}{c} 2219\\ 0 & 0 & 0\\ 0 & 0 & 0\\ 0 & 0 & 0\\ 0 & 0 &$

Analyse

Le moteur CAS de calcul formel permet de faire l'étude d'une fonction numérique de variable réelle avec les outils et les notations habituelles du lycéen.

- 1. Taper CAS pour aller dans l'écran CAS.
- 2. Entrer au clavier $f(x) := \frac{1}{2}(x+1)^2 1$ puis Enter.
- 3. Pour dériver, taper simplement f'(x) puis **Enter**.
- 4. On peut revenir à la définition de f'(x), limite du taux d'accroissement.
- 5. Factoriser f(x) et écrire une équation de la tangente au point d'abscisse $\sqrt{2} 1$ n'est pas plus compliqué.
- 6. On étudie aisément les signes de f'(x) et de f(x) sur ${\mathbb R}$.

Au niveau de la classe de terminale, on peut faire l'étude complète d'une fonction numérique non rationnelle.

- 1. Entrer au clavier $g(x) := x 2\sqrt{x^2 + 1}$ puis Enter.
- 2. Taper g'(x) pour obtenir la fonction dérivée.
- 3. On obtient aisément l'unique zéro de g'(x).
- 4. Résoudre $g'(x) \ge 0$ est tout aussi aisé grâce au CAS.
- 5. Obtenir simplement une équation de la tangente au point d'abscisse 0 se fait comme au 5.
- 6. Pour les branches infinies on étudie classiquement les limites de g(x)/x en $+\infty$ et $-\infty$.
- 7. On calcule ensuite les limites qui confirment que la courbe représentative de g admet deux asymptotes obliques d'équations y = -x et y = 3x en $+\infty$ et $-\infty$.
- 8. Grâce au calcul intégral on peut aussi évaluer l'aire du domaine plan de frontières la courbe représentative de g, l'axe des ordonnées, la droite d'équation y = -x et la droite d'équation x = t.
- On en déduit, pas à pas, que la limite de cette aire, lorsque tend t vers +∞, est +∞.

CAS Explora	ateur trig
$f:=(x) \rightarrow \left(\frac{1}{2}*(x+1)^2 - 1\right)$	$(x) \rightarrow \left(\frac{1}{2} * (x+1)^2 - 1\right)$
$f'(x)$ $\{f(x+h)-f(x)\}$	x+1
$\lim_{h \to 0} \left \frac{h(x,h)(x)}{h} \right $	x+1
factor(f(x))	$\frac{1}{2}*(x+\sqrt{2}+1)*(x+\sqrt{2}+1)$
f'(J2-1)*(x-(J2-1))+f(J2- solve(f'(x)>=0)	-1) $\sqrt{2} * (x + \sqrt{2} + 1)$
solve(f(x)<0)	{x>-\2-1 AND x<\2-1}
Sto ► simplif	
CAS For	iction 10:39
$\lim_{h \to 0} \left(\frac{I(x+n) - I(x)}{h} \right)$	x+1
$g:=(x) \rightarrow (x-2*\sqrt{x^2+1})$	$(x) \rightarrow \left(-2*\sqrt{x^2+1}+x\right)$
g'(×)	$-\frac{2*x}{\sqrt{2}+1}+1$
zeros(g'(x))	
solve(g'(x)>=0)	$\left\{ x <= \frac{1}{ 2 } \right\}$
g'(0)*x+g(0)	(45) x-2
Sto ► simplif	
CAS For	iction 10:40
solve(g'(x)>=0)	$\left\{ x < = \frac{1}{\sqrt{3}} \right\}$
solve(g'(x)>=0) g'(0)*x+g(0)	$\begin{cases} x <= \frac{1}{\sqrt{3}} \\ x - 2 \end{cases}$
solve(g'(x)>=0) g'(0)*x+g(0) $\lim_{x\to\infty} \left(\frac{g(x)}{x}\right)$	$\begin{cases} x <= \frac{1}{\sqrt{3}} \\ x - 2 \\ -1 \end{cases}$
solve(g'(x)>=0) g'(0)+x+g(0) $\lim_{X\to\infty} \left(\frac{g(x)}{x}\right)$ $\lim_{X\to\infty} (g(x)+x)$	{x<= <u>1</u> <u>√3</u> } x-2 -1
solve(g'(x)>=0) g'(0)+x+g(0) $\lim_{X\to\infty} \left(\frac{g(x)}{x}\right)$ $\lim_{X\to\infty} (g(x)+x)$ $\lim_{X\to-\infty} \left(\frac{g(x)}{x}\right)$	$\begin{cases} x <= \frac{1}{\sqrt{3}} \\ x - 2 \\ -1 \\ 0 \\ 3 \end{cases}$
solve(g'(x)>=0) g'(0)+x+g(0) $\lim_{\substack{X\to\infty\\x\to\infty}} \left(\frac{g(x)}{x}\right)$ $\lim_{\substack{X\to\infty\\x\to\infty}} \left(g(x)+x\right)$ $\lim_{\substack{X\to-\infty\\x\to-\infty}} \left(\frac{g(x)}{x}\right)$ $\lim_{\substack{X\to-\infty\\x\to-\infty}} \left(g(x)-3+x\right)$	$ \begin{bmatrix} x < \frac{1}{\sqrt{3}} \\ x - 2 \\ -1 \\ 0 \\ 3 \\ 0 \end{bmatrix} $
solve(g'(x)>=0) g'(0)+x+g(0) $\lim_{X\to\infty} \left(\frac{g(x)}{x}\right)$ $\lim_{X\to\infty} (g(x)+x)$ $\lim_{X\to-\infty} \left(\frac{g(x)}{x}\right)$ $\lim_{X\to-\infty} (g(x)-3+x)$ Sto > simplif	$ \begin{bmatrix} x <= 1 \\ \overline{3} \end{bmatrix} x - 2 -1 0 3 0 0 0 $
solve(g'(x)>=0) g'(0)+x+g(0) $\lim_{X\to\infty} \left(\frac{g(x)}{x}\right)$ $\lim_{X\to\infty} (g(x)+x)$ $\lim_{X\to-\infty} \left(\frac{g(x)}{x}\right)$ $\lim_{X\to-\infty} (g(x)-3+x)$ Sto > simplif	$\begin{bmatrix} x < \frac{1}{\sqrt{3}} \\ x - 2 \\ -1 \\ 0 \\ 3 \\ 0 \\ - 1 Var \\ 19747 $
solve(g'(x)>=0) g'(0)+x+g(0) $\lim_{X\to\infty} \left(\frac{g(x)}{x}\right)$ $\lim_{X\to\infty} (g(x)+x)$ $\lim_{X\to-\infty} \left(\frac{g(x)}{x}\right)$ $\lim_{X\to-\infty} (g(x)-3+x)$ Sto > simplif	$\begin{bmatrix} x < \frac{1}{\sqrt{3}} \\ x^{-2} \\ -1 \\ 0 \\ 3 \\ 0 \\ - \frac{19147}{19147} \\ x^{-2} \\ SIGN(g(x) - (x^{-2})) \\ -1 \end{bmatrix}$
solve(g'(x)>=0) g'(0)+x+g(0) $\lim_{X\to\infty} \left(\frac{g(x)}{x}\right)$ $\lim_{X\to\infty} (g(x)+x)$ $\lim_{X\to-\infty} \left(\frac{g(x)}{x}\right)$ $\lim_{X\to-\infty} (g(x)-3+x)$ Sto > simplif	$ \begin{cases} x <= \frac{1}{\sqrt{3}} \\ x - 2 \\ -1 \\ 0 \\ 3 \\ 0 \\ \hline \\ - \frac{1 \sqrt{3}}{2} \\ 5 \\ 1 \\ - \frac{19! 47!}{2} \\ 5 \\ 1 \\ - \frac{19! 47!}{2} \\ 5 \\ 1 \\ - \frac{19! 47!}{2} \\ - 19! 4$
solve(g'(x)>=0) g'(0)+x+g(0) $\lim_{X\to\infty} \left(\frac{g(x)}{x}\right)$ $\lim_{X\to\infty} (g(x)+x)$ $\lim_{X\to-\infty} \left(\frac{g(x)}{x}\right)$ $\lim_{X\to-\infty} (g(x)-3+x)$ Sto > simplif Cns Stats $\int_{0}^{t} -x-g(x)dx$ $\lim_{X\to\infty} \left(\sqrt{t^{2}+1}-t\right)$	$ \begin{cases} x <= \frac{1}{\sqrt{3}} \\ x - 2 \\ -1 \\ 0 \\ 3 \\ 0 \\ \hline \\ - \frac{19! 47[1]}{x - 2} \\ SIGN(g(x) - (x - 2)) \\ -1 \\ -LN(\sqrt{t^2 + 1} - t) + t * \sqrt{t^2 + 1} - t^2 \\ 0 \\ - \frac{19! 47[1]}{x - 2} \\ - \frac{19! 47[1]}{x - 2}$
solve(g'(x)>=0) g'(0)+x+g(0) $\lim_{X\to\infty} \left(\frac{g(x)}{x}\right)$ $\lim_{X\to\infty} (g(x)+x)$ $\lim_{X\to-\infty} \left(\frac{g(x)}{x}\right)$ $\lim_{X\to-\infty} (g(x)-3+x)$ Sto > simplif CRS Stats $\int_{0}^{t} -x-g(x)dx$ $\lim_{t\to\infty} \left(\sqrt{t^{2}+1}-t\right)$ $\lim_{t\to\infty} \left(-LN\left(\sqrt{t^{2}+1}-t\right)\right)$	$ \begin{bmatrix} x \le \frac{1}{\sqrt{3}} \\ x - 2 \\ -1 \\ 0 \\ 3 \\ 0 \\ \hline - \frac{19!47}{10} \\ x - 2 \\ SIGN(g(x) - (x - 2)) \\ -1 \\ -LN(\sqrt{t^2 + 1} - t) + t * \sqrt{t^2 + 1} - t^2 \\ 0 \\ 0 \end{bmatrix} $
solve(g'(x)>=0) g'(0)+x+g(0) $\lim_{X\to\infty} \left(\frac{g(x)}{x}\right)$ $\lim_{X\to\infty} (g(x)+x)$ $\lim_{X\to-\infty} (g(x)-3+x)$ Sto > simplif CRS Stats $\int_{0}^{t} (-x-g(x)dx)$ $\lim_{t\to\infty} (\sqrt{x^{2}+1}-t)$ $\lim_{t\to\infty} (t_{x}\sqrt{x^{2}+1}-t)$	$ \begin{bmatrix} x < \frac{1}{\sqrt{3}} \\ x - 2 \\ -1 \\ 0 \\ 3 \\ 0 \\ - \frac{19147}{19147} \\ x - 2 \\ SIGN(g(x) - (x - 2)) \\ -1 \\ -LN(\sqrt{t^2 + 1} - t) + t \times \sqrt{t^2 + 1} - t^2 \\ 0 \\ \infty \\ 1 \end{bmatrix} $
solve(g'(x)>=0) g'(0)*x+g(0) $\lim_{X\to\infty} \left(\frac{g(x)}{x}\right)$ $\lim_{X\to\infty} (g(x)+x)$ $\lim_{X\to\infty} (g(x)-3+x)$ Sto > simplif CAS Stats $\int_{0}^{t} -x-g(x)dx$ $\lim_{t\to\infty} (-LN(\sqrt{t^{2}+1}-t))$ $\lim_{t\to\infty} (t*\sqrt{t^{2}+1}-t^{2})$	$\begin{bmatrix} x < -\frac{1}{\sqrt{3}} \\ x - 2 \\ -1 \\ 0 \\ 3 \\ 0 \\ -\frac{19147}{10} \\ 5 \\ SIGN(g(x) - (x - 2)) \\ -1 \\ -LN(\sqrt{t^2 + 1} - t) + t*\sqrt{t^2 + 1} - t^2 \\ 0 \\ \infty \\ \frac{1}{2} \end{bmatrix}$

Etudions la « forme » de la courbe représentative de g.

- Par l'étude des signes de g(x)+x et de g(x)-3x qui sont négatifs on sait que la courbe est située sous ses deux asymptotes.
- 11. Le CAS permet de calculer la dérivée seconde g'' et de vérifier qu'elle est négative.
- 12. On vérifie que la concavité est négative et que la courbe est sous sa tangente au point d'abscisse 0.

La résolution d'inéquations trigonométriques est facilitée par le moteur CAS et l'Applet Paramétrique.

- Taper chaque (in)équation, en précisant grâce au la le domaine décrit par x, par exemple un intervalle pour les déterminations principales.
- 2. On peut illustrer l'ensemble solution grâce à l'Applet Paramétrique. (cf ci-contre).

En ce qui concerne le Calcul Intégral, la HP Prime n'est pas en reste et le moteur CAS est là encore efficace.

- 1. On se propose de déterminer une primitive d'une fonction peu usuelle.
- Si on ne spécifie pas l'ensemble que décrit x, le CAS nous affiche un message nous avertissant de possibles discontinuités en 1 et –1 (intégration par parties).
- 3. On est donc invité à distinguer deux cas (cf ci-contre)
- 4. Pour vérifier (fonction non dérivable en 1 et en -1), on représente dans l'Applet Fonction la fonction

Différentiation Implicite

Si $4y^4 - 5x^2y^2 + x^4 = 0$, calculer $\frac{\partial y}{\partial x}$. Il s'agit là d'un problème de différentiation implicite.

La méthode utilisée montre que cette dérivée dépend des valeurs de *x* et de *y*. La HP Prime va permettre à l'élève de le comprendre en le visualisant graphiquement.

 Bien que le CAS ne calcule pas directement on peut l'utiliser pour établir des résultats partiels (cf ci-contre).

<u>Astuce</u> : Entrer d'abord l'expression seule, pour la garder à portée de main. Utiliser alors Copy pour l'insérer dans le calcul en cours.

Maintenant grâce à l'Applet Graphiques Avancés on peut poursuivre notre exploration.

- 2. Taper Apps puis toucher Graphiques Avancés
- 3. Entrer $4y^4 5x^2y^2 + x^4 = 0$ en V1.
- 4. Taper Port pour visualiser le graphe.

Ce graphe apparaît comme la réunion des droites

d'équations $y = x, y = -x, y = \frac{1}{2}x$ et $y = -\frac{1}{2}x$.

La commande factor du CAS va nous permettre de le vérifier.

- 5. Taper **CAS** pour aller dans l'écran CAS.
- 6. [Mem B, puis ¹Algèbre, puis ⁴Factoriser.
- 7. Avec copy aller chercher l'expression.
- 8. Taper $\square_{z}^{\text{Enter}}$ pour voir la factorisation.

On retrouve bien les équations des droites. Mais le graphe étant constitué de ces quatre droites, les

seules valeurs de
$$\frac{\partial y}{\partial x}$$
 sont $\left\{1, -1, \frac{1}{2}, -\frac{1}{2}\right\}$

Comment concilier cela avec la fraction rationnelle de la dérivée partielle ?

- 7. Taper CAS pour revenir à l'écran CAS.
- 8. Taper simplif
- 9. Taper ^{[],√,[]}, puis sélectionner ^[] |□
 (il s'agit de la commande « sachant que » qui permet une substitution dans une expression)
- 10. Taper et se déplacer dans l'historique avec le doigt pour retrouver la fraction rationnelle.
- 11. Sélectionner-la et taper Copy.
- 12. Entrer en bas à droite du modèle « sachant que » la substitution y=x.
- <u>Astuce</u>: utiliser les minuscules pour les variables (dans le calcul formel CAS).
- 13. Taper $\boxed{\operatorname{Enter}_{\approx}}$ pour voir le résultat.
- 14. Recopier le dernier calcul et remplacer en bas à droite la substitution par y=x/2.
- 15. Recopier le dernier calcul et remplacer en bas à droite la substitution par y=-x.
- 16. Recopier le dernier calcul et remplacer en bas à droite la substitution par y=-x/2.

On voit ici la synergie des différents applets interactifs associés au moteur de calcul formel (CAS) de la nouvelle calculatrice HP Prime.

Sto 🕨

simplif

Ces fonctionnalités puissantes permettent aux élèves d'explorer les situations mathématiques les plus diverses, d'émettre des conjectures, notamment à partir d'explorations graphiques, et d'utiliser le CAS pour établir les preuves mathématiques de ces conjectures.

Arithmétique des Entiers

La HP Prime, en mode numérique, a toutes les fonctions usuelles, mais, avec son moteur CAS, elle calcule sur les entiers avec une précision, « dans la pratique », aussi grande qu'on veut.

- 1. Taper sing pour aller dans l'écran d'Accueil.
- 2. Utiliser la commande ifactor pour décomposer les entiers 15120 et 11025 en facteurs premiers.
- En déduire leur PGCD est aisé en prenant les facteurs communs 3, 5 et 7 avec les exposants les plus petits. Vérifier avec gcd et ifactor (cf ci-contre).
- 4. Lister les diviseurs de 315 avec idivis.
- 5. SIZE donne le nombre des diviseurs de 315.
- 6. MOD 11 donne le reste modulo 11 d'un entier.
- 7. Malheureusement on atteint ici la taille maximale des entiers manipulés en mode numérique. On obtient une erreur car la HP Prime passe en mode scientifique.

Par contre en mode CAS, il n'y a plus de limitation.

- 8. Taper **CAS** pour aller dans l'écran CAS.
- Ici 11025⁴ a tous ses chiffres et ... son reste MOD 11. et powmod(11025,27,11) donne 11025²⁷ MOD 11=9.
- 10. De même on obtient tous les facteurs premiers de 19!
- On peut décomposer de très grands nombres comme
 2¹²⁸+1, grâce au CAS en 10s (utile en cryptographie).
- 12. 1365 et 484 étant premiers entre eux, le théorème de Bachet-Bézout nous permet de dire qu'il existe un couple (u,v) tels que 1365u+484v=1 à savoir (89;-251).
- 13. On cherche, selon la légende, un entier x compris entre 500 et 1000 tel que x=2 [3] et x=3 [5] et x=2 [7]. La HP Prime résout ce problème de restes chinois en deux opérations avec ichinrem et solve.
- 14. La HP Prime peut travailler dans $\mathbb{Z} / p\mathbb{Z}$ en résolvant, par exemple, le système ci-contre dans $\mathbb{Z} / 5\mathbb{Z}$.

pgcd	12:39	pgcd	12:40
<pre>EXPORT pgcd(a,b) BEGIN LOCAL r; r:=1; WHILE r>0 D0 r:= a MOD b; a:=b; b:=r; PRINT("a="+a+" b="+b); END; END; END; END;</pre>	(a, l II EI END	<pre>>>>BegIN = b = 0 THEN RETURN(_SE RETURN(pgcd_(b,: ;</pre>	(a); irem(a,b)));;
Cmds Tmplt Page 🖣 Vé	rif Cm	ds Tmplt	Vérif

1	Stats - 1Var	14:45
ifactor(15120)		24*33*5*7
lfactor(11025)		32*52*72
gcd(15120,11025)		315
lfactor(315)		32*5*7
lcm(15120,11025)		529200
ifactor(529200)		4*3*52*72
idivis(315)	[1 3 9 5 15 45 7 21 63	35 105 315]
SIZE(idivis(315))		{12}
11025 MOD 11		3
3 ⁴ MOD 11		4
11025 ⁴ MOD 11		7
110254	1.477	45544379E16
15!	130	7674368000
ifactor(15!)	2 ¹¹ *3 ⁶ *	3*7 ² *11*13
19!	1.216	45100409E17

CAS State	s – 1Var 14	1:08 0 T C
110254	- 1477455443789	0625
11025 ⁴ MOD 11		4
powmod(11025,4,11)		4
19!	12164510040883	2000
ifactors(19!) [2 16 3	85372111131171	19 1]
lfactors(2 ¹²⁸ +1) [59649589127497217 1	57046892006851290547	21 1]
gcd(1365,484)		1
labcuv(1365,484,1)	[89 -	-251]
ichinrem([2 3],[3 5],[2 7])	[-82	105]
solve(x MOD 105=105-82)	x>500 AND x<1000 {548.,653.,758.,863.,	968.}
linsolve(%%([3*x+4*y=2 4	*x+4*z=4 x+2*y+4*z=1],5 [2 %% 5 -1 %% 5 -1 %),[x ; 6% 5]
[340]	-2 %% 5 -1 %% 5 0 %	%5]
m_5z:=%% 4 0 4 ,5	-1 %% 5 0 %% 5 -1 %	3% 5
([[1 2 4]])	1 1 % % 5 2 % % 5 -1 %	1%5∐
m_5z ⁻¹	1000 5 -2 96 96 5 2 96	202
	10404 E 10404 E 204	204 E
	וע 2 – כמעמע ו כמעמע ו	ב מענ
Sto b simplif		

On peut traduire l'algorithme d'Euclide de recherche du pgcd(a,b) sous forme de deux programmes l'un itératif en mode 'Num' de la HP Prime et l'autre récursif en mode CAS.

Pour plus de détails voir ci-dessous les pages 45 à 49 (Algorithmique)

Arithmétique des Polynômes

Le moteur CAS de la HP Prime est à même de traiter de la factorisation des polynômes, dans \mathbb{R} comme dans \mathbb{C} , des diviseurs, des PGCD et ppcm, du théorème de Bachet-Bézout, et ce même avec plusieurs variables.

- 1. Taper CAS pour aller dans l'écran CAS.
- Taper ^{man} et ^{caug} puis choisir factor qui donne la factorisation d'un polynôme dans ℝ.
- Taper Shift + CAS puis cocher Utiliser *i* dans la page de configuration du CAS pour voir les racines complexes du polynôme. On peut aussi utiliser Cfactor.
- 4. Taper partfrac permet de décomposer une fraction rationnelle en éléments simples dans ℝ ou dans ℂ (après avoir coché ou non Utiliser *i* dans ῶ𝔅). La décomposition en éléments simples est une étape technique pas toujours très intéressante de la recherche d'une primitive d'une fraction rationnelle.
- 5. Taper [Shift] + [CAS] puis décocher Utiliser i.
- 6. Taper divis pour obtenir les diviseurs d'un polynôme puis SIZE pour obtenir le nombre de ces diviseurs.
- 7. Taper gcd pour obtenir le plus grand commun diviseur de deux polynômes.
- a(x)=x³-8 et b(x)=x²+2x-3 étant premiers entre eux, le théorème de Bachet-Bézout nous permet de dire qu'il existe (u(x),v(x)) tels que a(x)u(x)+b(x)v(x)=cte. Ici c'est u(x)=-x-4 et v(x)=x²+2x-1 pour obtenir 35.
- 9. quorem donne le quotient et le reste de la division euclidienne d'un polynôme par un polynôme non nul.
- 10. lcm donne le plus petit commun multiple de deux polynômes non nuls.

La HP Prime peut faire ces calculs arithmétiques sur des polynômes de plusieurs variables sans aucun problème.

- 11. factor permet de factoriser des polynômes mais aussi de simplifier des fonctions rationnelles.
- 12. gcd donne encore le plus grand commun diviseur.

Enfin partfrac permet, là encore, de décomposer une fraction rationnelle en éléments simples.

L'algorithmique fait partie de tous les programmes de mathématiques du lycée et la HP Prime possède un langage de programmation, proche du Pascal, conçu pour enseigner (celui de la HP 39gII).

Premier algorithme :

On donne le poids d'une lettre (de 500 g maximum) et l'algorithme calcule le tarif d'affranchissement. Les variables **poids** et **tarif** sont *locales*.

- demander le **poids**.
- avec des tests (SI...ALORS) déterminer le tarif.
- afficher le **tarif** calculé.
- 1. Taper $[hift] + [1]_{Program} Y$ pour entrer en mode Programme.
- 2. Taper **Nouv.** pour créer un nouveau programme puis
- 3. Taper et l'éditeur de programme s'ouvre avec le « squelette » du programme entre BEGIN et END.
- 4. Taper la commande LOCAL poids, tarif ; au clavier. (chez HP on peut taper lettre à lettre chaque mot).
- Saisir la commande suivante en tapant massimilier puis ici ⁶E-S et ⁵INPUT. Avant de taper Enter on peut voir la syntaxe de la commande INPUT avec meno.
- Pour la suite du programme on accède aux tests en tapant met puis ²Branche et ¹IF THEN.

Il suffit alors de compléter le IF ... THEN ... END ;

- 7. Recopier la ligne par la méthode déjà vue plus haut en utilisant les touches very et very.
 (on convient ici que, si le poids de la lettre est trop élevé, on affiche un tarif de 0€).
- Pour afficher le tarif calculé, taper muss ⁶E-S et
 ⁵PRINT puis Enter. Compléter alors la commande.

Taper Vérif pour vérifier la syntaxe du programme.

No	uveau progra	amme	18:55
Nom: Ti	mbre		
Entrer le nouvea	u nom		
Edit		Annul	OK
	Timbre		20:14
EXPORT Timbre() BEGIN			
LOCAL poids,tar INPUT(poids);	if;		
END;			
Cmds Tmplt	9	Vérif	
	Timbre		22:21
EXPORT Timbre()			
LOCAL poids, tar	if;		
IE poids>0 TH	IEN 0.63+tar	if END:	
IF poids>20 TH	EN 1.05+tar:	if END: if END:	
IF poids>100 TH	EN 2.55+tar:	if END; if END:	
IF poids>500 TH	EN O⊳tarif	END;	
END;			
Cmds Tmplt	-	Vérif	
1S	Timbre		22:22
EXPORT Timbre()			See U
LOCAL poids, tar	if;		
TE poides0	IEN 0 62++	f END.	
IF poids>2	EN 0.05FLAF		
IF poids>1	programme	ur dans le	
IF poids>500 IF	EN UPTAFIT I	END;	
PRINT("Pour "+p	oids+"g tim	brer à "+tar:	if+"€")
			OK

9. Taper \bigcirc et \bigcirc $+ \begin{bmatrix} 1 \\ Program \\ Y \end{bmatrix}$ pour fermer l'éditeur.

10. Toucher Timbre et exécuter le programme avec **Exec**

11. L'écran de saisie apparaît. Entrer le poids et **Enter**.

- 12. Le tarif du timbre apparaît dans un écran de sortie.
- 13. Taper **Enter** pour revenir à la liste des programmes.
- 14. En tapant **Débog** on peut déboguer le programme.
 - Apparaît alors l'écran ci-contre et une barre de menu
 - **Pas** : permet d'exécuter Timbre pas à pas
 - Arrêt : on stoppe l'exécution de Timbre
 - **Cont** : on quitte le mode débogage

On peut aussi exécuter le programme Timbre à partir de l'écran d'Accueil, car la calculatrice possède maintenant une nouvelle commande Timbre qu'on atteint en tapant puis **Utili**. puis Timbre . On obtient la réponse.

-	Stats - 1Var	11:19	+	Stats - 2Var
M5	Fonct. des progr.	[4 1 -1]	M6	5421
	4 Extrait	101		0 1 -1 -1
M6	5 Kaprekar >	5421	1 million	1 1 -1 2
	6 Facto >	0 1 -1 -1	M7	133
	?Timbre_2 >	1 1 -1 2		313
M7	8Plot_Param >	[133]	13 Fonction E1(V)	-Constion C2(V)dV
1.1	9Timbre 3	313	J-3 FORCION FILM	-Folicuoli.F2(x)ux 0
der.	o Time bus	0 0 -2	Timbre	"Pour 128g timbrer à 2.55€"
13 Fonct	H limbre	1 limbre	Timbre	"Pour 256g timbrer à 3.4€"
-3 ^{Ponce}	B Fonc. Utilisateur	0	Timbre	"Pour 30g timbrer à 1.05€"
Math	CAS App Utili.	Catlg OK	Sto 🕨	فكالمستر وكالم

On peut améliorer ce premier programme par :

- l'ajout d'un message dans l'écran de saisie (INPUT)
- par une boucle REPEAT...UNTIL pour vérifier la saisie
- par la commande CASE pour encadrer les IF...THEN

C'est l'occasion d'introduire en algorithmique la notion de boucle très utilisée pour imposer une saisie correcte (ici un poids inférieur à 500g).

On vérifiera, par exemple en déboguant le programme, que les tests sont plus simples et que dès qu'un test est satisfait l'exécution saute après l'ordre CASE.

poids en g 547		_
500g may		
Jung max		-

Ici on invite à refaire une saisie correcte pour sortir de la boucle REPEAT...UNTIL.

Enfin, comme les tarifs postaux changent fréquemment, on peut les stocker grâce au Tableur de la HP Prime dans un tableau qu'on appellera Lettre (cf ci-contre).

- 15. Taper Apps et toucher l'icône Tableur. (cf page 25)
- 16. Renommer les colonnes A et B en Poids et Prix.
- 17. Entrer les poids et les tarifs puis quitter le tableur.
- 18. Sauvegarder (**Sauv.**) le tableau sous le nom de Lettre.
- 19. On peut utiliser les éléments de ce nouveau tableau sous les noms de Lettre.A1 et Lettre.B1, par exemple.
- 20. Taper $[\text{Shiff} + [\frac{1}{Program}] + [\frac{1}{Program}]$ pour entrer en mode Programme
- 21. Taper Timbre et le modifier avec Crnds et Tmplt.

L'interactivité entre les Applets de la HP Prime est un avantage. Si les tarifs changent, il suffit de modifier les données du tableau Lettre et non pas le programme.

Deuxième algorithme :

Une fonction continue *F* s'annule une seule fois sur [A;B] et l'algorithme détermine, par dichotomie de l'intervalle, une valeur approchée du zéro de *F* sur [A;B] à 10^{-N} près. On passe les *paramètres* directement au programme. On utilise les variables *locales* : ecart, x, y et f_A.

- paramètres passés : **F**, **A**, **B** et **N**.
- on stocke l'expression de F(x) dans Fonction.F0
- on initialise ecart à 10^{-N} et f_A à Fonction.F0(A).
- on appelle x le centre de l'intervalle courant.
- On itère l'opération suivante : x :=(A+B)/2 et y :=Fonction.F0(x) Si y*f_A<0 alors B prend la valeur de x Sinon A prend la valeur de x et f_A la valeur de y. jusqu'à ce que B-A<ecart.
- On renvoie la valeur de x arrondie à N décimales.
- 1. Taper $[hift] + [1]_{Program Y}$ pour entrer en mode Programme.
- 2. Taper **Nouv.** pour créer un nouveau programme puis

3. Entrer le programme par **Conds** et **Toppe** ou le clavier. On peut ainsi taper le programme sur l'émulateur et l'envoyer sur sa calculatrice en la connectant en USB.

JP.	Poids	PLIX	0		L.	1
1	20	.63	1	21		- (c
2	50	1.05	1	100		
3	100	1.55	-			
4	250	2.55	1		- 1	
5	500	3.40	1	1.1	1.1	1
6	11.0	1				
7	1					
8		-	-			
9			-	-		-
10		_	-			
11		-	-			_
12			-			_
12			-			-
Pr	oids:		100			
		Forn	nat A	ller Séle	cti Aller	
				Tisslage		ي. د ان
-	DODT			Timbre		
E)	CPORT	limbr	e()	•		
Ы	GIN		1			
	CAL p	oids,	tarif;			
۲ł	TNDUT	(nai-		Innida an	." "500	1.11
p	ITTI -	oider	500.	poras en	g , bung ma	ax)
U	err b	01022	:000;			
C/	SF					
-	IF po	ids<	ettre.	A1 THEN L	ettre.B1+ta	arif
	IF po	ids≤L	ettre.	A2 THEN L	ettre.B2+ta	arif
	IF po	ids≤L	ettre.	A3 THEN L	ettre.B3⊧ta	arif
	IF po	ids≤L	ettre.	A4 THEN L	ettre.B4+ta	arif
Ŀ	DEFAU	LT Le	ttre.E	5⊁tarif;		
E	ND;					
	TNT/"	Davie				
FI	TNI C	Pour	+poid	IST & CIMD	rei a +tai	117+
1	mds	Tm	olt 🚹	Page	Vérif	1
-	annab	(Junit	Sinc J	1060	(veru)	I
			1	Dichotomie	2	16
E)	PORT	Dicho	tomie	E A D NIX		
BI				F, A, B, N)		
17	GIN			F,A,B,N)		
Ľ	GIN CAL e	cart,	x,y,f_	г,А,В,N) <u>А;</u>		
10	EGIN CAL e CAL e	cart, ⊧ecar	x,y,f_ t;	F,A,B,N) _A;		
10 F	GIN CAL e (-N) Funct	cart, ⊧ecar ion.F	x,y,f_ t; 0;	г,А,В,N) <u>А;</u>		
	GIN CAL e (-N) Funct Inctio	cart, ⊧ecar ion.F n.FO(x,y,f_ t; 0; A)⊧f_A	, , , , , , , , , , , , , , , , , , ,		
10 Fi	GIN CAL e (-N) Funct Inctio PEAT	cart, ▶ecar ion.F n.FO(x,y,f_ t; 0; A)⊾f_A	A;		
10 Fi RI	GIN CAL e)^(-N) Funct Inctio PEAT (A+B) TE v*	cart, ▶ecar ion.F n.FO(/2►x;	x,y,f_ t; 0; A)⊦f_A Functi	F,A,B,N) A; 	y:	
10 Fi Fi	GIN CAL e P(-N) Functio PEAT (A+B) IF y*	cart, ▶ecar ion.F n.FO(/2►x; f_A <c B</c 	x,y,f_ t; O; A)►f_A Functi) THEN	F,A,B,N) A; .: .on.FO(x)⊁	y;	
1(Fi RI	EGIN CAL e P(-N) Funct Inctio PEAT (A+B) IF y* ELSE	cart, ▶ecar ion.F n.F0(/2►x; f_A <c B</c 	x,y,f_ t; O; A)⊁f_A Functi) THEN	F,A,B,N) A; 	y:	
1(Fi RI	EGIN CAL e P(-N) Functio PEAT (A+B) IF y* ELSE x*	cart, ▶ecar ion.F n.F0(/2►x; f_A <c B A;v►f</c 	x,y,f_ t; O; A) ► f_A Functi) THEN	F,A,B,N) A; F0(x)⊁	y:	
	EGIN CAL e CAL e (-N) Functio EPEAT (A+B) IF y* ELSE x* END;	cart, ▶ecar ion.F n.FO(/2►x; f_A <c B A;y►f</c 	x,y,f_ t; O; A)⊁f_A Functi THEN	F,A,B,N) A; 	y:	
	GIN OCAL e OCAL e Inctio PEAT (A+B) IF y* ELSE X END; ITIL B	cart, ▶ecar ion.F n.FO(/2▶x; f_A <c B A;y▶f -A<ec< td=""><td>x,y,f_ t; O; A)►f_A Functi THEN _A :_A</td><td>A; A; FO(x)⊁</td><td>y:</td><td></td></ec<></c 	x,y,f_ t; O; A)►f_A Functi THEN _A :_A	A; A; FO(x)⊁	y:	

On appelle ce programme depuis l'écran d'Accueil par + Utili. et Dichotomie.

Page

Vérif

END:

Cmds Tmplt

Fonct	ion 19:02
	11-12
M7	[133]
	313
	0 0 -2
\int_{-3}^{3} Fonction.F1(X)-Fonction.F	2(X)dX 0
Timbre	"Pour 128g timbrer à 2.55€"
Timbre	"Pour 256g timbrer à 3.4€"
Timbre	"Pour 30g timbrer à 1.05€"
Dichotomie $\left(\frac{1}{3} * X^3 - X + 1^{-3}, -1\right)$.8) -2.1038034
Dichotomie(Fonction.F1,-3,0,9) -2.414213562
Sto >	

On peut passer en paramètre la « formule » de la fonction entre apostrophes (quotes) ou son nom.

END

END

'€")

Lettre

L'algorithme suivant donnera deux programmes. L'un fonctionnera en mode *Numérique*. L'autre fonctionnera en mode *Symbolique*. Cela nous permettra de voir clairement la différence.

Troisième algorithme :

Il s'agit de calculer la racine carrée d'un réel positif par la méthode de Newton (algorithme de Babylone), avec une précision donnée (n : nombre de décimales). On passe les *paramètres* directement au programme.

On utilise les variables *locales* : r1, r2.

- paramètres passés : **x**, et **n**.
- on initialise r1 à (1+x)/2.
- On itère l'opération suivante : r2:=r1 et r1 :=(r2+x/r2)/2 jusqu'à ce que ABS(r1-r2)<10⁻ⁿ.
- On renvoie la valeur de r1 arrondie à n décimales.
- 1. Taper $\left[\frac{\text{Shiff}}{1} + \frac{1}{\text{Program Y}} \right]$ pour entrer en mode Programme
- 2. Créer le programme Radic (cf en haut à droite).
- 3. On exécute ce programme depuis l'écran d'Accueil.

On voit qu'on atteint rapidement la limite de précision de la calculatrice lorsqu'elle travaille en mode *Numérique*.

Pour créer un programme dans l'environnement CAS,

- 4. Taper **CAS** pour aller dans l'écran CAS
- 5. Créer par exemple la fonction CAS $radic_(x,n) := x/n$.
- 6. Editer et copier le contenu du programme Radic.
- 7. Editer alors la variable radic_ (CAS) en collant le contenu du programme Radic.
- 8. Ajouter les variables locales i1, q1, f1
- 9. Taper les 3 lignes de code où on calcule les parties entière i1 et fractionnaire f1 du rationnel r1, puis on renvoie le résultat sous forme de chaîne de caractères i1 :=iquo(numer(r1),denom(r1)) ;q1 :=r1-i1 ;

 $f1 := iquo(numer(q1)*10^n, denom(q1))+10^n;$ RETURN(string(i1)+"."+right(string(f1),n));

Le CAS de la HP Prime permet d'effectuer les opérations usuelles *exactes* sur des *rationnels*. On appelle radic_(q) en passant un rationnel q. Ici numer(q) et denom(q) nous donnent le numérateur et le dénominateur de ce rationnel.

Radi	ic 14:00
EXPORT Radic(x,n) BEGIN LOCAL r1,r2; r1:=(1+x)/2; REPEAT r2:=r1; r1:=(r2+x/r2)/2 UNTIL ABS(r1-r2)<(10^(-r RETURN(ROUND(r1,n)); END;	n));
Cmds Tmplt	Várif
Centras I mubre I	
Stats -	1Var 16:52 2(X)dX
$\int_{-3}^{3} Fonction.F1(X)-Fonction.F.$	1Var 16:52 2(X)dX 0
Stats - Stats - Sta	1Var 16:52 2(X)dX 0 "Pour 128g timbrer à 2.55€"
Stats - Stats - Sta	IVar 16:52 2(X)dX 0 "Pour 128g timbrer à 2.55€" 3.4€" "Pour 256g timbrer à 3.4€" 10
Stats - \int_{-3}^{3} Fonction.F1(X)-Fonction.F. Timbre Timbre Timbre (1 - 2	IVar 16:52 2(X)dX 0 "Pour 128g timbrer à 2.55€" "Pour 256g timbrer à 3.4€" "Pour 30g timbrer à 1.05€"
Stats – \int_{-3}^{3} Fonction.F1(X)–Fonction.F. Timbre Timbre Timbre Dichotomie $\left(\frac{1}{3} \times X^{3} - X + 1^{2}, -3, -1\right)$	IVar 16+52 2(X)dX 0 "Pour 128g timbrer à 2.55€" "Pour 256g timbrer à 3.4€" "Pour 30g timbrer à 1.05€" .8)
Stats - \int_{-3}^{3} Fonction.F1(X)-Fonction.F. Timbre Timbre Timbre Dichotomie $\left(\frac{1}{3} \times X^{3} - X + 1^{1}, -3, -1\right)$	IVar 16+52 2(X)dX 0 "Pour 128g timbrer à 2.55€" "Pour 256g timbrer à 3.4€" "Pour 30g timbrer à 1.05€" .8) -2.1038034 -2.414213552
Stats - \int_{-3}^{3} Fonction.F1(X)-Fonction.F. Timbre Timbre Dichotomie $\left(\frac{1}{3} \times X^{3} - X + 1^{1}, -3, -1, -3, -1, -3, -1, -3, -1, -3, -3, -1, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3$	IVar 16+52 2(X)dX 0 "Pour 128g timbrer à 2.55€" "Pour 256g timbrer à 3.4€" "Pour 30g timbrer à 1.05€" ,8 -2.1038034 -2.414213562
Stats - \int_{-3}^{3} Fonction.F1(X)-Fonction.F. Timbre Timbre Dichotomie $\left(\frac{1}{3} * X^3 - X + 1', -3, -1, -3, 0, 9\right)$ Radic(36,8) Radic(36,6)	IVar 16+52 2(X)dX 0 "Pour 128g timbrer à 2.55€" "Pour 256g timbrer à 3.4€" "Pour 30g timbrer à 1.05€" .8) -2.1038034 -2.414213562 6 2 236668
Stats - \int_{-3}^{3} Fonction.F1(X)-Fonction.F. Timbre Timbre Dichotomie $\left(\frac{1}{3} * x^3 - X + 1', -3, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,$	IVar 16:52 2(X)dX 0 "Pour 128g timbrer à 2.55€" "Pour 256g timbrer à 3.4€" "Pour 30g timbrer à 1.05€" .8) -2.1038034 -2.414213562 6 2.2360668 2.2360679775
Stats - \int_{-3}^{3} Fonction.F1(X)-Fonction.F. Timbre Timbre Dichotomie $\left(\frac{1}{3}*x^3-X+1^{1},-3,-1,-3,0,9,-3,0,-3,0,-3,0,-3,0,-3,0,-3,0,-3$	IVar 16:52 2(X)dX 0 "Pour 128g timbrer à 2.55€" "Pour 256g timbrer à 3.4€" "Pour 30g timbrer à 1.05€" "Pour 30g timbrer à 1.05€" (8) -2.1038034 -2.414213562 6 2.2360679775 5.0160641942
Stats - \int_{-3}^{3} Fonction.F1(X)-Fonction.F. Timbre Timbre Dichotomie $\left(\frac{1}{3}*x^3-X+1^{+},-3,-1,-3,0,9,-3,0,-3,0,-3,0,-3,0,-3,0,-3,0,-3$	IVar 16:52 2(X)dX 0 "Pour 128g timbrer à 2.55€" " "Pour 256g timbrer à 3.4€" " "Pour 30g timbrer à 1.05€"

On passe en mode « symbolique » CAS

	radic_	15:18
<pre>(x,n)->BEG] LOCAL r1,r r1:=(1+x) REPEAT r2:=r1; r1:=(r2 UNTIL (at i1:=iquo(f1:=iquo(f1:=iquo(sETURN(st END;</pre>	N 2,i1,q1,f1; //2; !+x/r2)/2 is(r1-r2))<(10^(-n) numer(r1),denom(r1 numer(q1)*10^n,den tring(i1)+"."+right);));q1:=r1-i1; om(q1))+10^n; * (string(f1),n));
Cmds Tr	nplt] Stats – 1Var	Vérif]
	"-107.260869565	5217391304347826"
	"2.2360679774	radic_(5,25) 4997896964091736"
	"16.031219541881393	7364871354757688"
radic_(5,12)		"2.236067977499"
radic_(5,15)	"2	.236067977499789"
radic_(5,30)	"2.236067977499789	9696409173668731"
radic_(2,30)	"1,41421356237309	5048801688724209"
radic_(3,42) "1.73205080	756887729352744634	1505872366942805"
Sto ► sim	nplif	

On a une illustration de la puissance du calcul symbolique CAS.

L'algorithme, bien connu, du crible d'Eratosthène est ici l'occasion de mettre en œuvre la gestion des listes par la HP Prime et de voir l'avantage des *variables locales*.

Quatrième algorithme :

Lister les nombres premiers inférieurs à un entier donné n. Erathostène a eu l'idée de commencer par barrer, dans la liste des entiers inférieurs à n, les multiples de 2 (premier nombre premier) strictement supérieurs à 2, puis de choisir l'entier suivant 3, donc premier, et de barrer les multiples de 3 strictement supérieurs à 3, etc. Paramètre passé n.

- On crée la liste list1 constituée de **n** nombres 1.
- On barrera un élément de la liste en le remplaçant par 0 et donc le premier élément 1 est mis à 0.
- Première partie de l'algorithme : on met donc à 0 les éléments d'indices multiples successifs de 2, de 3, de 5, etc.
- On crée la liste list2 des entiers premiers inférieurs à *n* constituée de l'unique élément 2.
- Seconde partie de l'algorithme : on lit la liste list1 et à chaque fois que l'on rencontre 1 on en déduit que son indice k est premier et on ajoute k à list2.
- On renvoie la liste list2, qu'on peut stocker en L1.
- 1. Taper $\left[\frac{\text{Shiff}}{1} + \frac{1}{\text{Program Y}} \right]$ pour entrer en mode Programme
- 2. Créer le programme Crible (cf en haut à droite).
- 3. On exécute ce programme depuis l'écran d'Accueil.

HP Prime permet aussi de *définir* directement par $\begin{bmatrix} xt \partial n \\ buind b \end{bmatrix}$, une *fonction* de plusieurs variables *glocales*. Ici on crée la fonction Orthodromie donnant, en *milles nautiques* (**nmi**), la plus courte distance entre deux points du globe.

- 1. Taper Shift $+ \begin{bmatrix} x t \theta n \\ Define \end{bmatrix}$ pour entrer en mode « Define ».
- 2. Entrer le nom Orthodromie de la fonction puis taper la formule qui définit fonction. Puis taper .
- 3. Taper Shift + Note de même nom où on note ce que représentent A, B, C, et D.

Dans l'écran d'Accueil, on appelle la fonction Orthodromie en suivant les instructions de la Note ci-contre.

On peut alors convertir la distance en **km** avec la fonction CONVERT. (*Les Saintes-Sézanne*)

Utiliser CONVERT pour obtenir le résultat en km

Format Style _____ Inser

On associe une note du même nom à la fonction définie Orthodromie ci-dessous.

Mode Examen

La HP Prime peut être configurée et verrouillée en « mode examen ». La calculatrice reste verrouillée avec un mot de passe pour une période prédéfinie. Des LED situées en haut de la calculatrice clignoteront pour indiquer que celle-ci est en "mode examen".

- 1. Taper Shift + w pour Home Settings.
- Descendre jusqu'à la page numéro 3 «Exam Mode». On peut aussi, en bas de l'écran, toucher la seconde moitié de Page ¼ puis celle de Page ¼ 1.

Le menu contextuel est alors :

- **Config** : Ouvre la page de Configuration, où on coche les fonctionnalités à désactiver.
- **Choose** : ouvre une boîte de choix.
- **Page** : toucher à gauche pour la page précédente et à droite pour la page suivante dans les Home Settings.
- **More** : ouvre un menu d'options pour copier ou réinitialiser la configuration.
- **Start/Send** : lance le « Mode Examen »sur la HP Prime ou impose ce mode à une autre HP Prime (**Start** devient **Send** si la HP Prime est connectée via USB).

Ce que vous pouvez faire:

- Donner un nom à votre configuration.
- Déterminer une durée d'examen.
- Déterminer un mot de passé.
- Cocher une case pour imposer un effacement de la mémoire au lancement du « Mode Examen ».
- Cocher une case pour que les LED clignotent en « Mode Examen ».

Home Settings					:58 41
Angle Measure:	Radians				*
Number Format:	Standard			•	
Entry:	Textbook				*
Integers:	Hex	Ŧ	32	±:	
Complex:	(a,b)	Ŧ			
Language:	English				Ŧ
Decimal Mark:	Dot (.)				Ψ.
Choose angle measure	2				
Choose F	Page ¼ ■				

Exam Mode		08:58 41
Configuration:	Default Exam	*
Timeout:	15 Minutes	Ŧ
Default Angle:	No change	Ŧ
Password:		
Erase memory:		
Blink LED:		
Choose exam mode configuration		
Config Choose	Page 3⁄4 👎 More	Start

- 3. Taper Configuration, taper More, et entrer un nom pour votre configuration : EXAM2014
- 4. Taper Timeout, puis pour sélectionner une durée d'examen.
- 5. Taper Default Angle, puis taper **Choose** et choisir l'unité d'angle par défaut.
- 6. Taper 2 fois sur Blink LED (pour sélectionner et confirmer l'allumage des LED).

Construisons alors notre configuration EXAM2014.

- 7. Taper **Config** pour la page de Configuration.
- 8. Cocher User Apps pour désactiver les Applets sauvegardés par l'utilisateur et leurs données.
- 9. Cocher CAS pour désactiver le CAS.
- 10. Cocher New Notes and Programs pour désactiver l'éditeur de Mémos & Programmes.
- 11. Se déplacer dans l'arbre avec le doigt.
- 12. Taper sur (+) à gauche de Mathematics pour développer l'arbre de ce paragraphe.
- 13. Cocher Hyperbolic pour désactiver toutes les fonctions trigonométriques hyperboliques.
- 14. Taper sur (+) à gauche de Probability pour développer l'arbre puis cocher Comb et Perm pour désactiver les fonctions ${}_{n}C_{r}$ et ${}_{n}P_{r}$.
- 15. Taper version pour sauver cette configuration sous le nom choisi : EXAM2014
- 16. Taper Start pour lancer le « Mode Examen » sur la calculatrice ou, si celle-ci est connectée à une autre HP Prime, taper Send to lancer le « Mode Examen » sur la HP Prime connectée. Les LED clignotent avec le code aléatoire choisi.

09:00 Exam Mode Configuration: EXAM2014 Timeout: 8 Hours Default Angle: Radians Password: 12345 Erase memory: Blink LED: 🗸 Blink LED while in exam mode More Config 1 Page ¾ Start Exam Mode Configuration ⊕ System Apps User Apps Physics Help Units Matrices Complex √ CAS

Par exemple le Connectivity Kit (cf p56) peut transmettre le mode examen « no CAS » aux HP Prime.

On vérifie que les calculatrices des élèves sont bien en « Mode Examen » et il est très difficile pour l'élève de sortir de ce mode (même par réinitialisation ou retrait de la batterie). Il faudrait qu'il connecte sa HP Prime à l'ordinateur qui lui a transmis le mode examen ou il faut qu'il attende les 8 heures

L'Applet Data Streamer

L'Applet DataStreamer pilote l'interface HP StreamSmart 410 à laquelle peuvent-être connectés jusqu'à quatre capteurs Fourier[®] simultanément, pour recueillir des données en temps-réel. La série de données recueillies est ensuite transmise à l'un des applets de Statistiques de la HP Prime pour l'analyse. Connecter 1 à 4 capteurs au StreamSmart 410 et démarrer l'applet Data Streamer.

Taper Apps puis toucher l'icône DataStreamer. L'applet s'ouvre en vue "Plot".

Des touches de menu apparaissent en bas d'écran :

- **Canal** : sélection d'un des 4 canaux de mesure (si plus d'un capteur est connecté à la HP Prime)
- **Pan/Zoom**: permet de basculer du mode Pan au mode Zoom. (Cf détails ci-dessous).
- **Trace** : active ou désactive le tracé.
- Scope : démarre le mode Oscilloscope.
- **Export** : ouvre un menu permettant de choisir l'intervalle des données à exporter vers l'applet d'analyse statistique.
- **Start/Stop** : démarre/arrête l'échantillonnage.
- **I**: affiche une seconde page d'options.

Ce que vous pouvez faire :

- Avec le Pan actif, taper (a) ou (v) pour déplacer le flux de données verticalement sur l'écran.
- Taper Pane pour basculer en zoom. Taper (
 ou) pour zoomer ou dézoomer de manière à
 choisir la fréquence d'échantillonnage du flux
 de données.
- Taper **Stop** pour stopper le flux de données. Le bouton **Start** réapparaît, prêt pour démarrer un nouvel échantillonnage.

Taper Export pour ouvrir le menu Export dans lequel on peut sélectionner exactement les données que l'on veut envoyer vers l'applet de Statistiques pour analyse

Trace Export

48.69s

Pan•

Start

v: 1.75°0

Exemple : Expérience sur la Température

Dans cet exemple, nous plongeons un capteur de température dans un bécher d'eau glacée.

- Brancher un capteur de température à l'interface StreamSmart 410, puis connecter cette interface StreamSmart 410 à la HP Prime au moyen du câble USB.
- Sur la HP Prime, taper Apps Info et toucher l'icône DataStreamer.
- 3. Taper **Start** pour démarrer le flux de données.
- 4. Pendant le recueil des données et avec le Pan actif (
 Pane), taper

 ou
 pour centrer le flux des données dans l'écran.
- 5. Taper Pare pour basculer en zoom.
 A l'aide de ou zoomer ou dé zoomer verticalement pour cadrer au mieux le flux de données dans l'écran de la calculatrice.
- Dès que l'on estime avoir assez recueilli de données, taper stopp pour stopper l'acquisition des données et donc arrêter le flux.
- 7. Taper Export pour ouvrir le menu Export.
- 8. Taper puis taper (•) ou (•) pour rogner le signal des données à gauche.
- Quand l'intervalle des données souhaité a été sélectionné, taper puis core.
- Taper K à nouveau pour démarrer l'applet
 Stats_2Var (présenté dans ce document en p 33).
- Taper Symbol pour entrer dans la vue "Symbol. Taper sur Type 1, puis sur Choix pour choisir l'ajustement, ici, Exponentiel.
- 12. Taper view et sélectionner Echelle Automatique pour grapher le nuage des données recueillies et l'ajustement exponentiel..

Taper your revenir à la vue "Symb" et voir l'équation de l'ajustement exponentiel.

Emulateur / Kit de Connectivité

L'émulateur est une calculatrice HP Prime Virtuelle (Virtual Calculator), au fonctionnement identique à celui d'une vraie HP Prime (y compris *tactile* par la souris ou l'écran). Le Kit de Connectivité permet de connecter votre ordinateur à cet émulateur, mais aussi à d'autres HP Prime via les ports USB (câbles ou dongles Wifi).

Il permet surtout de taper le texte des Programmes ou des Notes (mémos) sur le clavier de l'ordinateur, puis de les sauvegarder sous forme de fichier texte (Unicode) avec NotePad avant de les transférer.

Le Connectivity Kit a trois onglets :

• **Calculatrice** : permet d'afficher le contenu de la calculatrice connectée (virtuelle ou non), en particulier toutes les données (variables, matrices, listes) ainsi que les applets, y compris ceux développés par l'utilisateur.

Ce volet permet aussi d'éditer aisément les Programmes ainsi que les Notes Personnelles.

- Contenu : permet d'éditer des QCM, des Sondages et les Configurations d'Examen.
- **Classe** : permet d'afficher l'écran de la calculatrice HP Prime de chaque élève, pour en discuter, si besoin est, avec l'élève, Il permet aussi d'envoyer des Applets, des Sondages et des QCM. Ce volet permet de transmettre les configurations « Examen » et de lancer les sessions d'Examen.